博碩士論文 108226042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:13.58.82.79
姓名 陳願丞(Yuan-Cheng Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析
(Multi-page superposed signal changed with reading position and the analysis of its phase tolerance)
相關論文
★ 用於牙齒頻譜的多點量測之高光譜系統★ 結合全像光學元件的微型化數位全像顯微鏡
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 一般傳統儲存系統都是一個記錄位置記錄一個訊號,例如光碟在讀寫時都是判斷當下位置的訊號是0或1,對應著數位訊號的一個位元bit,在連續讀取數個不同位置後得到一位元組byte,以此離散的代碼符號表示資訊。
本論文提出一種特殊參考光調製下,在不同位置對同個記錄區域重曝預設好的相位訊號之記錄方式,此記錄區域在讀取時,隨讀取位置改變對應到讀取光不同位置波前時,會有隨讀取位置變化的繞射訊號疊加讀出,因此單一一個記錄位置即可讀出一位元組資訊,以實現多工時降低M/#消耗以達到增加儲存容量的效果。
摘要(英) In traditional holographic data storage system, a recording position can only record one signal. When reading holographic disk, we only distinguish the signal between zero and one from one place. After moving between different places, we can get a continuous binary dataset.
In our approach, we try to modulate a spatial reference beam contains designed phase signal based on recording position. Thus, reading signals might vary in different position. After single position record in different position, we scan reading beam and read sets of data. This method changes one place one signal rule and greatly improve storage space.
關鍵字(中) ★ 全像儲存
★ 布拉格簡併
★ M-number
關鍵字(英) ★ Holographic storge
★ Bragg degeneracy
★ M-number
論文目次 摘要 V
ABSTRACT VI
致謝 VII
目錄 VIII
圖目錄 XI
第一章 緒論 1
1-1 研究動機 1
1-2 全像術應用於儲存系統 3
1-3 全像術發展 4
第二章 體積全像原理介紹 8
2-1 全像簡述 8
2-2 相位疊加法 10
2-3 布拉格條件 12
2-4 布拉格簡併 15
2-5 耦合理論 16
2-5-1 布拉格匹配 20
2-6 M-NUMBER與儲存系統多工限制 22
2-7 傅立葉轉換 24
2-8 GERCHBERG–SAXTON演算法 25
2-9 角頻譜傳遞法 26
2-10 近距離傳遞下的FRESNEL TRANSFORM 29
2-11 訊雜比 31
第三章 隨讀取位置改變之多頁繞射疊加訊號理論模型 33
3-1 GERCHBERG–SAXTON演算法模型對應實際實驗理論 34
3-1-1 GS演算法檢索出SLM輸入相位 35
3-1-2 GS演算法模型對應之實驗理論 38
3-2 全像儲存模擬推導 43
3-3 碟片位移對系統之影響 47
3-4 離軸參考光對模擬系統之分析 48
3-5 GS演算時矩陣計算對模擬之影響 49
第四章 理論的模擬結果與驗證 54
4-1 單參考光源下對模擬的部分驗證 54
4-2 PQ-PMMA與C-RT20重曝比較 58
4-2-1 C-RT20在系統下的重曝實驗 59
4-2-2 PQ-PMMA在系統下的重曝實驗 62
4-3 多個點光源實驗模擬 63
4-4 參考光光路設計 68
第五章 SLM相位誤差容忍度分析 72
5-1 三頁繞射疊加下相位誤差之影響 73
5-2 五頁繞射疊加下相位誤差之影響 79
第六章 結論 86
參考文獻 88
中英文名詞對照表 92
參考文獻 [1] M. Hilbert and P. López, “The World′s Technological Capacity to Store, Communicate, and Compute Information,” Science 332, 60–65.(2011).
[2] J. Gantz, C. Chute, A. Manfrediz, S. Minton, D. Reinsel, W. Schlichting and A. Toncheva The Diverse and Exploding Digital Universe: An Updated Forecast of Worldwide Information Growth Through 2011 ( An IDC White Paper, 2008).
[3] David Reinsel, John Gantz, John Rydning, Data Age 2025 The Digitization of the World From Edge to Core (An IDC White Paper, 2018).
[4] 台灣創新技術博覽會2020, 「突破性立體全像儲存技術」,https://www.futuretech.org.tw/futuretech/index.php?action=product_detail&prod_no=P0008700005565.
[5] G. Boston, K. Bradley, M. Casey, S. S. Cavaglieri, J. M. Fontaine, L. Gaustad, A. Häfner, S. L. Molneryd, R. Ranft, D. Schüller, and N. Wallaszkovits, Handling and Storage of Audio and Video Carriers (the International Association of Sound and Audiovisual Archives, 2014).
[6] B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20, 9109-9121 (2012).
[7] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749-752 (1994).
[8] Z. Jie, W. Dayong, P. Spozmai, W. Yunxin, and R. Lu, “Speckle suppression in off-axis lensless Fourier transform digital holography by LCOS, ” presented at 2018 Imaging and Applied Optics Meeting Congress, Florida, US, 25-28 June 2018.
[9] M. Józwik, T. Kozacki, K. Liżewski, and J. Kostencka, “Digital holography with multidirectional illumination by LCoS SLM for topography measurement of high gradient reflective microstructures,” Appl. Opt. 54, 2283-2288 (2015).
[10] Y. W. Yu, C. C. Sun, X. C. Liu, W. H. Chen, S. Y. Chen, Y. H. Chen, C. S. Ho, C. C. Lin, T. H. Yang, and P. K. Hsieh, “Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium,” OSA Continuum 2, 703-714 (2019).
[11] A. A. Adeyemi and T. E. Darcie, “Application of Digital Micro-mirror Devices to Spherical Reference Beam Digital In-line Holography,” presented at Digital Holography and Three-Dimensional Imaging 2009, Vancouver Canada, 26-30 April 2009.
[12] J. P. Liu, M. H. Wu, and P. W. M. Tsang, “3D display by binary computer-generated holograms with localized random down-sampling and adaptive intensity accumulation,” Opt. Express 28, 24526-24537 (2020).
[13] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[14] E. N. Leith and J. Upatnieks, “Reconstruct ed Wavefronts and Communication Theory” Opt. Soc. Am. 52, 1123-1130 (1962).
[15] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
[16] Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Bullman, J.J. Levinstein and K. Nassau, “Optical-induced refractive index inhomogeneity in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[17] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin and V. L. Vinetskii, “Holographic storage in electrooptic crystals.I. Steady state,” Ferroelectrics 22, 949-960 (1979).
[18] J. Feinberg, “Self-pumped, continuous-wave phase-conjugator using internal reflection,” Opt. Lett. 7, 486-488 (1982).
[19] F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
[20] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
[21] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403-2417 (1996).
[22] F. T. S. Yu, S. Wu, A. W. Mayers, and S. Rajan, “Wavelength multiplexed reflection matched spatial filters using LiNbO3,” Opt. Commun. 81, 343-347 (1991).
[23] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-1473 (1992).
[24] C. Denz, G. Pauliat, and G. Roosen, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171-176 (1991).
[25] C. C. Sun, R. H. Tsou, W. Chang, M.W. Chang and J.Y. Chang, “Random phase-coded multiplexing in LiNbO3 for volume hologram storage by using a ground-glass,” Opt. Quantum Electron. 28, 1551-1561 (1996).
[26] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
[27] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012- 6015 (1995).
[28] P. Refregier and B. Javidi, “Optical image encryption using input and Fourier plane random phase encoding,” Opt. Lett. 20, 767-769 (1995).
[29] B. Wang, and C. C. Sun, “Enhancement of signal-to-noise ratio of a double random phase encoding encryption system,” Opt. Eng. 40, 1502-1506 (2001).
[30] C. C. Sun, W. C. Su, B. Wang and A. E. T. Chiou, “Lateral Shifting Sensitivity of a Ground Glass for Holographic Encryption and Multiplexing Using Phase Conjugate Readout Algorithm,” Opt. Commun. 191, 209-224 (2001).
[31] C. C. Sun, C. Y. Hsu, C. H. Wu, and W. C. Su, “Spatial filtering of three-dimensional objects based on volume holography,” Opt. Eng. (Letters) 42, 2788-2789 (2003).
[32] C. C. Sun and P. P. Banerjee, “Volume holographic optical elements,” Opt. Eng. 43, 1957-1958 (2004).
[33] Y. W. Yu, C. H. Yang, T. H. Yang, S. H. LIN, and C. C. Sun, “Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material,” Opt. Express 25, 19, 22947-22958 (2017).
[34] Y. W. Yu, Y. C. Chen, K. H. Huang, C. Y. Cheng, T. H. Yang, S. H. Lin, and C. C. Sun, “Reduction of phase error on phase-only volume-holographic disc rotation with pre-processing by phase integral,” Opt. Express 28, 19/14, 28573-28583 (2020).
[35] A. Pu and D. Psaltis, “Holographic data storage with 100 bits/pm2 density,” presented at 1997 Optical Data Storage Topical Meeting ODS Conference Digest , New York, US, 7-9 April 1997.
[36] G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250 Gigapixels/in2”, Opt. Lett. 26, 444-446 (2001).
[37] G. W. Burr and T. Weiss, “Compensation for pixel misregistration in volume holographic data storage,” Opt. Lett. 26, 542–544 (2001).
[38] G. W. Burr, “Holographic data storage with arbitrarily misaligned data pages,” Opt. Lett. 27, 542–544 (2002).
[39] M. Ayres, A. Hoskins, and K. Curtis, “Image oversampling for page-oriented 13 optical data storage”, Appl. Opt. 45, 2459-2464 (2006).
[40] J. F. Heanue, M. C. Bashaw, and L. Hesselink, “Volume Holographic Storage and Retrieval of Digital Data,” Science 265, 749-752 (1994).
[41] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, 1st eds. (Springer-Verlag, 2000).
[42] K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High Speed Holographic Data Storage at 500Gb/in2,” SMPTE Mot. Imag. J. 115, 200-203 (2006).
[43] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[44] D. Psaltis, K. Buse, and A. Adibi, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665-668 (1998).
[45] K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems, (John Wiley & Sons, 2010).
[46] S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[47] L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710-1712 (1998).
[48] C. C. Sun, “A simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
[49] W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43, 1728-1733 (2004).
[50] Moseley, G. J. Henry, “The High-Frequency Spectra of the Elements,” The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science. 6. 26, 1024-1034 (1913).
[51] C. C. Sun, M. S. Tsaur, W. C. Su, B. Wang, and A. E. T. Chiou, “Two-dimensional shifting tolerance of a volume-holographic correlator,” Appl. Opt. 38, 4316-4324 (1999).
[52] P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
[53] H. Kogelnik, “Coupled Wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
[54] F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-98 (1996).
[55] S. S. Orlov, W. P. , E. Bjornson, Y. Takashima, P. Sundaram, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[56] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
[57] R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” OPTIK 35, 237-246 (1972).
[58] J. R. Janesick, Photon Transfer (SPIE Publications, 2006).
[59] 余業緯,同軸全像儲存系統之特性與改良及溫度補償,國立中央大學光電科學研究所博士論文,中華民國九十八年。
[60] 孫慶成,光電工程概論 (全華圖書,新北市,2014)。
[61] M. P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377-5385 (1998).
指導教授 余業緯 孫慶成 楊宗勳(Yeh-Wei Yu Ching-Chern Sun Tsung-Hsun Yang) 審核日期 2021-10-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明