博碩士論文 108226048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.141.30.162
姓名 蔡佳緯(Chia-Wei Tsai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化物表面增強拉曼光譜單分子檢測
(Single molecule detection by nitride surface enhanced Raman spectroscopy)
相關論文
★ 基於氮化銦鎵表面增強拉曼散射的 DNA檢測★ 氮化銦鎵表面增強拉曼散射的製程優化
★ DNA detection by Al-decorated nitride SERS substrate★ 表面電荷密度對氮化銦鎵表面增強拉曼散射的影響
★ 生長奈米結構InGaN量子井用於表面增強拉曼散射★ 氮化銦鎵量子井銦含量對表面增強拉曼散射強度的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 科技的快速成長使人們生活品質
改善許多,醫療方面也因如此
在檢測設備及生醫技術 正在 蓬勃發展中, 也隨著半導體產業的興起,
半導體物理 應用於 生醫檢測技術可說是一大熱門研究議題。 表面增
強拉曼散射 surface-enhanced Raman scattering, SERS 可大幅增強 分
子的拉 曼散射訊號, 且具快速、高精確性,讓它 成為在分子檢測時
最普遍的工具。在本研究中,我們利用有機金屬化學氣相沉積法
(metal-organic chemical vapor deposition, MOCVD)成長氮化銦鎵奈米
量子井, 並在表面製作金 奈米顆粒,藉以誘發局部 表面電漿效應
localized surface plasmon resonance LSPR),並透過
rhodamine6G R6G)、 crystal violet(CV)螢光分子所產生的拉曼訊號,
來分析此 氮化物基板檢測單分子 的能力。 為了量到微弱的單分子訊號,我們執行一系列的製程優化,包括 金屬種類 、 金屬厚度、退火
溫度等等。 這些製程條件的優化,是為了提升基板表面的 LSPR和
電荷轉移共振 (charge transfer resonance, CTR)的強度。 我們 發現 以 厚
度 33nm的金 、 用爐管 700 維持 2小時 的退火溫度 ,可得到最強的
SERS訊號。 以氮化銦鎵奈米量子井形成的SERS基板,在單分子檢測的統計結果上,也呈現文獻報導 迥然不同 的趨勢 。
摘要(英) The rapid growth of science and technology has greatly improved the quality of people’s lives. In the medical field, inspective equipment and biomedical technology are booming. With the rise of the semiconductor industry, the application of semiconductor physics to biomedical inspective technology has drawn much research attention. Surface- enhanced Raman scattering (SERS) can greatly enhance the Raman signal of molecules, and is regarded as a promising biosensor because of its high speed and sensitivity capabilities.
In this research, metal-organic chemical vapor deposition (MOCVD) was used to grow InGaN nano-quantum wells. Metal nano-particles were then prepared on the epitaxial surface to induce the localized surface plasmon resonance (LSPR). To evaluate SERS performances, rhodamine6G R6G) and crystal violet(CV) fluorescent molecules were adopted as the analytes. For single-molecule detection, nanoparticle fabrication conditions, including metal selection, metal thickness and annealing temperature were optimized. It is found that Au nanoparticles, attained by 3-nm thick Au and 2-hr annealing at 700 ℃, can deliver a single-molecule statistics different from that in the literatures . Mechanisms for the unusual finding will be provided.
關鍵字(中) ★ 氮化物表面增強拉曼光譜單分子檢測 關鍵字(英) ★ Single molecule detection by nitride surface enhanced Raman spectroscopy
論文目次 論文摘要 ...................................................................... vii
Abstract ...................................................................... viii
誌謝 ........................................................................... ix
目錄 ........................................................................... xi
圖目錄 ....................................................................... xiii
第一章、緒論 .................................................................... 1
1.1表面增強拉曼散射的歷史與發展 ............................................... 1 1.2氮化銦鎵量子井應用於表面增強拉曼散射單分子檢測的優勢 ....................... 3
1.3研究動機與章節架構 ......................................................... 5
第二章、實驗原理、方法與儀器 .................................................... 7
2.1表面電漿共振的原理 ......................................................... 7
2.2表面增強拉曼散射的原理 .................................................... 11
2.3製成步驟與設備 ............................................................ 19 2.3.1有機金屬化學氣相沉積機台(MOCVD) ..................................... 19
2.3.2鍍金製成 .............................................................. 21
2.3.3退火製成 .............................................................. 21 2.3.4掃描式電子顯微鏡SEM(Scanning Electron Microscope) ....................... 23
2.3.5拉曼光譜儀的量測原理與架構 ............................................ 24
2.4磊晶結構 .................................................................. 27
2.5單分子檢測理論 ............................................................ 28
第三章、分析與討論 ............................................................. 33
3-1氮化銦鎵量子井對SERS的影響 .............................................. 33
3.2金屬厚度對SERS的影響 .................................................... 36
3.3金屬的選擇對SERS的影響 .................................................. 40
3.4退火溫度所造成表面金奈米顆粒型態不同對SERS的影響 ........................ 41
xii
3.5退火儀器對SERS的影響 .................................................... 45
3.6氮化銦鎵量子井對單分子SERS mapping檢測的影響............................. 47
第四章、結論與未來發展 ......................................................... 59
4.1結論 ...................................................................... 59
4.2未來發展 .................................................................. 60
參考文獻 ............................................................................................................................................... 61
參考文獻 1. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., & Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chemical Reviews 99, 2957-2976 (1999).
2. 林鼎晸 朱仁佑 表面增強拉曼散射光譜的發展與應用" 工業材料雜誌 261, 150-155 (2008)。
3. Dick, L. A., McFarland, A. D., Haynes, C. L., & Van Duyne, R. P. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. The Journal of Physical Chemistry B 106, 853-860 (2002).
4. Bankowska, M., Krajczewski, J., Dzięcielewski, I., Kudelski, A., & Weyher, J. L. Au–Cu alloyed plasmonic layer on nanostructured GaN for SERS application. The Journal of Physical Chemistry C 120, 1841-1846 (2016).
5. Jensen, T. R., Malinsky, M. D., Haynes, C. L., & Van Duyne, R. P. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. The Journal of Physical Chemistry B 104, 10549-10556 (2000).
6. 王菘郁 氮化銦鎵奈米量子井的表面增益拉曼散射分析, 國立中央大學光電科學與
工程學系碩士論文 ,,(2018) 。
7. Buckley, K., & Ryder, A. G. Applications of Raman spectroscopy in biopharmaceutical manufacturing: a short review. Applied Spectroscopy 71, 1085-1116 (2017).
8. 吳民耀,劉威志,“表面電漿子理論與模擬,”物理雙月刊 28, 486-496 (2006)。
9. 邱國斌,蔡定平,“金屬表面簡介,”物理雙月刊 28, 486-496 (2006)。
10.羅鈺棠 氮化物表面電漿生醫 感測器之穩定化, 國立中央大學光電科學與工程
學系碩士論文 ,,(2019)。
11. Jain, P. K., & El-Sayed, M. A. Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Letters 8, 4347-4352 (2008).
12. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, The Journal of Physical Chemistry B 3, 668-677 (2003).
13. Aroca, R. Surface-enhanced vibrational spectroscopy, Wiley, Chichester (2006).
14. Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R. R., & Feld, M. S. Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter 14, R597 (2002).
15. 陳瑤真 表面增強拉曼散射光 譜應用於生物單分子偵測,國立交通大學材料科
學與工程系所碩士論文 2005 。
16. Jiang, J. D., Burstein, E., & Kobayashi, H. Resonant Raman scattering by crystal-violet molecules adsorbed on a smooth gold surface: Evidence for a charge-transfer excitation. Physical review letters 57, 1793 (1986).
17. Arenas, J. F., Soto, J., Tocón, I. L., Fernández, D. J., Otero, J. C., & Marcos, J. I. The role of charge-transfer states of the metal-adsorbate complex in surface-enhanced Raman scattering. The Journal of chemical physics 116, 7207-7216 (2002).
18. Brolo, A. G., Irish, D. E., & Smith, B. D. Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. Journal of molecular structure 405, 29-44 (1997).
19. Chien, F. C., Zhang, T. F., Chen, C., Nguyen, T. A. N., Wang, S. Y., Lai, S. M., ... & Lai, K. Y. Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots. ACS Applied Nano Materials 4, 2614-2620 (2021).
20. Lombardi, J. R. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors. Faraday Discussions 205, 105-120 (2017).
21. Le Ru, E., & Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. Elsevier (2008).
22. Dieringer, J. A., Wustholz, K. L., Masiello, D. J., Camden, J. P., Kleinman, S. L., Schatz, G. C., & Van Duyne, R. P. Surface-enhanced Raman excitation spectroscopy of a single rhodamine 6G molecule. Journal of the American Chemical Society 131, 849-854 (2009).
23. Ohkawa, K., Watanabe, T., Sakamoto, M., Hirako, A., & Deura, M. 740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE. Journal of crystal growth 343, 13-16 (2012).
24. Mukai, T., & Nakamura, S. Ultraviolet InGaN and GaN single-quantum-well-structure light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Japanese Journal of Applied Physics 38, 5735 (1999).
25. Moura, C. C., Tare, R. S., Oreffo, R. O., & Mahajan, S. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface 13, 20160182 (2016).
26. Seshan, K. (Ed.) Handbook of thin film deposition processes and techniques. William Andrew (2001).
27. Zhu, F. Y., Wang, Q. Q., Zhang, X. S., Hu, W., Zhao, X., & Zhang, H. X. 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology 25, 185705 (2014).
28. Kneipp, K., Moskovits, M., & Kneipp, H. (Eds.). Surface-enhanced Raman scattering: physics and applications (Vol. 103). Springer Science & Business Media (2006).
29. Le Ru, E. C., & Etchegoin, P. G. Single-molecule surface-enhanced Raman spectroscopy. Annual Review of Physical Chemistry 63, 65-87 (2012).
30. Le Ru, E. C., Meyer, M., & Etchegoin, P. G. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. The Journal of Physical Chemistry B 110, 1944-1948 (2006).
31. Le Ru, E. C., Etchegoin, P. G., & Meyer, M. Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. The Journal of Chemical Physics 125, 204701 (2006).
32. Etchegoin, P. G., Meyer, M., & Le Ru, E. C. Statistics of single molecule SERS signals: is there a Poisson distribution of intensities?. Physical Chemistry Chemical Physics 9, 3006-3010 (2007).
33. Zrimsek, A. B., Wong, N. L., & Van Duyne, R. P. Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof. The Journal of Physical Chemistry C 120, 5133-5142 (2016). Mao, P. et al. Broadband single molecule SERS detection designed by warped optical spaces. Nature Communication 9, 5428 (2018).
34. Kirubha, E., & Palanisamy, P. K. Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies. Advances in Natural Sciences: Nanoscience and Nanotechnology 5, 045006 (2014). 35. Pei, L., Huang, Y., Li, C., Zhang, Y., Rasco, B. A., & Lai, K. Detection of triphenylmethane drugs in fish muscle by surface-enhanced Raman spectroscopy coupled with Au-Ag core-shell nanoparticles. Journal of Nanomaterials 2014, 730915 (2014).
36. Hus, J. W., Chen, C. C., Lee, M. J., Liu, H. H., Chyi, J. I., Huang, M. R., ... & Lai, K. Y. Bottom‐Up Nano‐heteroepitaxy of Wafer‐Scale Semipolar GaN on (001) Si. Advanced Materials 27, 4845-4850 (2015).
37. 胡道睿 ,氮化銦鎵表面增強拉曼散射的製程優化 國立中央大學光電科學與工程學系碩士論文, 2020 。
38.陳柏霖 MOCVD反應器氮化鎵薄膜成長之三維熱流場分析研究, 國立交通大學機械工程系所碩士論文, 2014 )。
指導教授 賴昆佑 簡汎清(Kun-Yu Lai Fan-Ching Chien) 審核日期 2021-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明