博碩士論文 108226053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.232.129.123
姓名 董澄逸(Cheng-Yi Tung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用編碼孔徑之高亮度高光譜成像系統
(High-Brightness Hyperspectral Imaging System with Use of Coded Aperture)
相關論文
★ 複雜波前體積全像強繞射計算模型之研究★ 應用DMD提高幀率之數位光學相位共軛投影系統之研究
★ 應用四步相移解碼多階相位之消除碟片位移雜訊之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 不同於傳統針孔陣列式積分場光譜儀,需要在系統進光量及頻譜解析度之間做選擇。在快照式高光譜影像(Snapshot Hyperspectral Imaging)架構下,本團隊提出新型屏幕設計,利用編碼孔徑(Coded aperture)之編碼方式,取代傳統針孔陣列,以提升系統進光量。
我們在相機前端加上閃耀光柵,以實現快照式高光譜影像之目的。此外,利用兩台相機同時擷取彩色影像與其對應的高光譜立方體。亦對編碼孔徑系統提出解碼演算法,並針對系統之波長定位、系統響應校正提出相對應適合之解決方案,透過結合編碼孔徑與高光譜概念,我們在不犧牲光譜解析度前提下建立了高亮度高光譜系統。並且,我們提出一套理論極限公式,連結了空間帶寬乘積與頻譜解析數量間之關係,可藉其快速設計出符合需求之編碼孔徑快照式高光譜影像系統。
摘要(英) In contrast to traditional Integral Field Spectroscopy with pinhole array, it trades off light collection for spectrum resolution. Our team proposed a novel screen design to replace the traditional pinhole array. We utilized coded aperture based on snapshot hyperspectral imaging system in order to enhance the light throughput.
We mounted the blazed grating in front of the camera to achieve snapshot hyperspectral system. In addition, we used two cameras to acquire color image and its corresponding hyperspectral cube at the same time. We also find an algorithm to decode the coded aperture system, and seek the suitable solution to wavelength localization and system response calibration. Through combining the concept of coded aperture and hyperspectral, we build a high-brightness hyperspectral system without sacrificing spectral resolution. Then we promoted a theory limit formula, connecting space-bandwidth product and number of wavelength channels. So that we can design the coded aperture snapshot hyperspectral system according to our demand.
關鍵字(中) ★ 高光譜影像
★ 編碼孔徑
★ 快照式高光譜成像
關鍵字(英) ★ Hyperspectral imaging
★ Coded aperture
★ Snapshot hyperspectral imaging
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XX
符號說明 XXI
第一章 緒論 1
1-1 高光譜成像(Hyperspectral Imaging)之發展 1
1-2 編碼孔徑之介紹 12
1-3 研究動機與目的 15
1-4 論文大綱 17
第二章 原理介紹 18
2-1 編碼孔徑 18
2-2 閃耀光柵 23
2-3 取樣定理(Sampling Theory)與空間帶寬乘積 25
2-4 歸一化相關係數(Normalized Correlation Coefficient,NCC) 28
第三章 編碼孔徑高光譜成像系統 29
3-1 基本原理 29
3-2 系統架構 32
3-3 波長定位 46
3-4 編碼孔徑解碼 50
3-4-1 直接反捲積法 50
3-4-2 Richardson–Lucy 反捲積法 51
3-4-3 兩種方法之比較 52
3-5 編碼孔徑高光譜立方體取值之方法 52
第四章 編碼孔徑高光譜成像系統校正與驗證 54
4-1 光學系統頻率響應之校正 54
4-2 系統之分析與驗證 57
4-2-1 色溫2930K之可調式平板燈分析及驗證 60
4-2-2 色溫3856K之可調式平板燈分析及驗證 65
4-2-3 色溫5299K之可調式平板燈分析及驗證 70
4-2-4 色溫6233K之可調式平板燈分析及驗證 75
4-2-5 螢幕顯示色塊之分析及驗證 80
4-3 系統之最佳化與效能分析 86
4-3-1 高波段系統之評估 97
4-3-2 高空間取樣率系統之評估 98
第五章 結論 99
參考文獻 101
附錄A 108
附錄B 113
中英名詞對照表 119
參考文獻 1. S. Chevrel, K. V, B. R, S. Marsh, T. T, M. H, L. Quental, V. P, S. V, K. E, and P. Aastrup, “Hyperspectral airborne imagery for mapping mining-related contaminated areas in various European environments–first results of the MINEO project,”presented at Fifth International Airborne Remote Sensing Conference, Francisco, USA, 2001.
2. H. Grahn, and P. Geladi, Techniques and applications of hyperspectral image analysis, (John Wiley & Sons, 2007).
3. W. D. Hively, G. W. McCarty, J. B. Reeves, M. W. Lang, R. A. Oesterling, and S. R. Delwiche,“Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields,”Applied and Environmental Soil Science 2011, 358193 (2011).
4. G. Lu, and B. Fei,“Medical hyperspectral imaging: a review,”J. Biomed. Opt. 19, 10901 (2014).
5. B. Fei, Data Handling in Science and Technology, (Elsevier, 2020).
6. H. L. Offerhaus, S. E. Bohndiek, and A. R. Harvey,“Hyperspectral imaging in biomedical applications,”J. Opt. 21, 010202 (2018).
7. X. Hadoux, F. Hui, J. K. H. Lim, and C. L. Masters,“Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease,”Nature Communications 10, 4227 (2019).
8. L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna,“Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,”Appl. Spectroscopy Reviews 48, 142-159 (2013).
9. D.-W. Sun, Hyperspectral imaging for food quality analysis and control (Elsevier, 2010).
10. F. M. Lacar, M. M. Lewis, and I. T. Grierson,“Use of hyperspectral imagery for mapping grape varieties in the Barossa Valley, South Australia,”in proceedings of IEEE 2001 International Geoscience and Remote Sensing Symposium (IEEE, 2001), 2875-2877.
11. S. Bajwa, P. Bajcsy, P. Groves, and L. Tian,“Hyperspectral image data mining for band selection in agricultural applications,”Transactions of the ASAE 47, 895 (2004).
12. E. K. Hege, D. O′Connell, W. Johnson, S. Basty, and E. Dereniak,“Hyperspectral imaging for astronomy and space surveillance,”Proc. SPIE 5159, 380-391 (2004).
13. Y. J. Hsu, C.-C. Chen, and C.-H. Huang,“Line-scanning hyperspectral imaging based on structured illumination optical sectioning,”Biomed. Opt. Express 8, 3005-3016 (2017).
14. G. Courtès,“Méthodes d′observation et étude de l′hydrogène interstellaire en émission,”Annales d′Astrophysique 23, 115 (1960).
15. R. Bacon,“The Integral Field Spectrograph TIGER: Results and Prospects,”in Proceedings of Tridimensional Optical Spectroscopic Methods in Astrophysics, Comte, G., Marcelin, M., ed., (Academic, 1995), 239-249.
16. R. Bacon, G. Adam, A. Baranne, and G. Courtès,“The integral field spectrograph TIGER,”in Proceedings of Tridimensional Optical Spectroscopic Methods in Astrophysics, IAU Colloquium 149, Comte, G., Marcelin, M., ed., (Academic, 1988), 1185-1194.
17. J. G. Dwight, and T. S. Tkaczyk,“Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy,”Biomed. Opt. Express 8, 1950-1964 (2017).
18. N. Hagen, and M. Kudenov,“Review of snapshot spectral imaging technologies,”Opt. Eng. 52, 090901 (2013).
19. A. Bodkin, A. Sheinis, A. Norton, J. Daly, S. Beaven, and J. Weinheimer,“Snapshot hyperspectral imaging: The hyperpixel array camera,”Proc. SPIE 7334, 73340H (2009).
20. A. Bodkin, A. Sheinis, A. Norton, J. Daly, C. Roberts, S. Beaven, and J. Weinheimer,“Video-rate chemical identification and visualization with snapshot hyperspectral imaging,”Proc. SPIE 8374, 83740C ( 2012).
21. N. S. Kapany,“Fiber Optics. Part I. Properties of Certain Dielectric Cylinders,”J. Opt. Soc. Am. 47, 413-422 (1957).
22. D. W. Fletcher-Holmes, and A. R. Harvey,“Real-time imaging with a hyperspectral fovea,”J. Opt. A: Pure and Appl. Opt. 7, S298-S302(2005).
23. J. Kriesel, G. Scriven, N. Gat, S. Nagaraj, P. Willson, and V. Swaminathan,“Snapshot hyperspectral fovea vision system (HyperVideo),”Proc. SPIE 8390, 83900T(2012).
24. J. M. Hill, J. R. P. Angel, J. S. Scott, D. Lindley, and P. Hintzen,“Multiple object spectroscopy: the medusa spectrograph,”The Astrophysical Journal 242, L69 (1980).
25. J. Bland-Hawthorn, J. Bryant, G. Robertson, P. Gillingham, J. O’Byrne, G. Cecil, R. Haynes, S. Croom, S. Ellis, M. Maack, P. Skovgaard, and D. Noordegraaf,“Hexabundles: imaging fiber arrays for low-light astronomical applications,”Opt. Express 19, 2649-2661 (2011).
26. D. Lee, R. Haynes, D. Ren, and J. Allington‐Smith,“Characterization of Lenslet Arrays for Astronomical Spectroscopy,”Publications of the Astronomical Society of the Pacific 113, 1406-1419 (2001).
27. S. Barden, J. Arns, and W. Colburn,“Volume-phase holographic gratings and their potential for astronomical applications,”Proc. SPIE 3355, 866 (1998).
28. H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto,“Single-cell viability assessment with a novel spectro-imaging system,”J. Biotechnol. 94, 299-308 (2002).
29. L. Gao, R. T. Kester, and T. S. Tkaczyk,“Compact Image Slicing Spectrometer (ISS) for hyperspectral fluorescence microscopy,”Opt. Express 17, 12293-12308 (2009).
30. L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk,“Depth-resolved image mapping spectrometer (IMS) with structured illumination,”Opt. Express 19, 17439-17452 (2011).
31. L. Gao, R. T. Smith, and T. S. Tkaczyk,“Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),”Biomed. Opt. Express 3, 48-54 (2012).
32. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk,“Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,”Opt. Express 18, 14330-14344 (2010).
33. A. Perot, and C. Fabry,“On the application of interference phenomena to the solution of various problems of spectroscopy and metrology,”The Astrophysical Journal 9, 87 (1899).
34. C. Blanch-Perez-del-Notario, W. Saeys, and A. Lambrechts,“Hyperspectral imaging for textile sorting in the visible–near infrared range,”J. Spectral Imaging 8 (2019).
35. A. S. Luthman, S. Dumitru, I. Quiros-Gonzalez, J. Joseph, and S. E. Bohndiek,“Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array,”J. Biophotonics 10, 840-853 (2017).
36. N. Spooren, B. Geelen, K. Tack, A. Lambrechts, M. Jayapala, R. Ginat, Y. David, E. Levi, and Y. Grauer,“RGB-NIR active gated imaging,”Proc. SPIE 9987, 998704 (2016).
37. J. Kaluzny, H. Li, W. Liu, P. Nesper, J. Park, H. F. Zhang, and A. A. Fawzi,“Bayer Filter Snapshot Hyperspectral Fundus Camera for Human Retinal Imaging,”Current eye research 42, 629-635 (2017).
38. K. Degraux, V. Cambareri, B. Geelen, L. Jacques, and G. Lafruit,“Multispectral compressive imaging strategies using fabry–pérot filtered sensors,”IEEE Trans. Comput. Imaging 4, 661-673 (2018).
39. “XIMEA imec HSI technology,” https://www.ximea.com/support/attachments/4675/XIMEA_imec_HSI_technology-Part-V1.1.pdf.
40. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz,“Single-shot compressive spectral imaging with a dual-disperser architecture,”Opt. Express 15, 14013-14027 (2007).
41. A. A. Wagadarikar, M. E. Gehm, and D. J. Brady,“Performance comparison of aperture codes for multimodal, multiplex spectroscopy,”Appl. Opt. 46, 4932-4942 (2007).
42. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady,“Video rate spectral imaging using a coded aperture snapshot spectral imager,”Opt. Express 17, 6368-6388 (2009).
43. Q. Zhang, R. Plemmons, D. Kittle, D. Brady, and S. Prasad,“Joint segmentation and reconstruction of hyperspectral data with compressed measurements,”Appl. Opt. 50, 4417-4435 (2011).
44. P. Vanier,“Improvements in coded aperture thermal neutron imaging,”Proc. SPIE 5199, 254-264 (1997).
45. K. Jahoda, C. B. Markwardt, and Y. Radeva,“Calibration of the Rossi X‐Ray Timing Explorer Proportional Counter Array,”The Astrophysical Journal Supplement Series 163, 401-423 (2006).
46. M. Woodring, D. Beddingfield, D. Souza, G. Entine, M. Squillante, J. Christian, and A. Kogan,“Advanced multi-dimensional imaging of gamma-ray radiation,”Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 505, 415-419 (2003).
47. J. Tous, J. Blazek, J. Zemlicka, and J. Jakubek,“Evaluation of a YAG:Ce scintillation crystal based CCD X-ray imaging detector with the Medipix2 detector,”J. Instrumentation 6, C11011-C11011 (2011).
48. T. Nakamura, E. M. Schooneveld, N. J. Rhodes, M. Katagiri, K. Sakasai, and K. Soyama,“Evaluation of the performance of a fibre-coded neutron detector with a ZnS/10B2O3 ceramic scintillator,”Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 600, 164-166 (2009).
49. J. Lilley, Nuclear physics: principles and applications (John Wiley & Sons, 2013).
50. K. Masumoto, A. Toyoda, K. Eda, and T. Ishihara,“Measurement of the Spatial Distribution of Neutrons in an Accelerator Room by the Combination of Activation Detectors and an Imaging Plate,”Radiation Safety Management 1, 12-16 (2002).
51. M. Hirota, C. Takada, K. Takasaki, T. Momose, O. Kurihara, T. Saze, S. Ito, and K. Nishizawa,“Feasibility of in vivo measurement of 239Pu distribution in lungs using an imaging plate,”Appl. Radiation and Isotopes 69, 808-813 (2011).
52. R. K. Mortimer, H. O. Anger, and C. A. Tobias, The gamma-ray pinhole camera with image amplifier (University of California Radiation Laboratory, 1954).
53. O. Gal, B. Dessus, F. Jean, F. Laine, and C. Leveque,“Functioning of the CARTOGAM portable gamma camera in a photon counting mode,”in Proceedings of IEEE 2000 IEEE Nuclear Science Symposium. Conference Record, (IEEE, 2000), 6-308-6/312.
54. O. Gal, B. Dessus, F. Jean, F. Laine, and C. Leveque,“Operation of the CARTOGAM portable gamma camera in a photon-counting mode,”IEEE Trans. Nucl. Sci. 48, 1198-1204 (2001).
55. B. A. Cattle, A. S. Fellerman, and R. M. West,“On the detection of solid deposits using gamma ray emission tomography with limited data,”Meas. Sci. Technol. 15, 1429-1439 (2004).
56. R. H. Dicke,“Scatter-Hole Cameras for X-Rays and Gamma Rays,”The Astrophysical Journal 153, L101 (1968).
57. E. E. Fenimore, and T. M. Cannon,“Coded aperture imaging with uniformly redundant arrays,”Appl. Opt. 17, 337-347 (1978).
58. N. Gehrels, G. Chincarini, P. Giommi, and K. O. Mason,“TheSwiftGamma‐Ray Burst Mission,”The Astrophysical Journal 611, 1005-1020 (2004).
59. J. S. Hong, S. Vadawale, M. Zhang, E. Bellm, A. Yousef, J. Noss, J. Grindlay, and T. Narita,“Laboratory coded-aperture imaging experiments: radial hole coded masks and depth-sensitive CZT detectors,”Proc. SPIE 5540, 63-72 (2004).
60. T. O. Tumer, T. J. O. Neill, K. Hurley, H. Ogelman, R. J. Paulos, R. C. Puetter, I. Kipnis, W. J. Hamilton, and R. Proctor,“All-sky X-ray and Gamma-ray Astronomy Monitor (AXGAM),”IEEE Trans. Nucl. Sci. 44, 572-576 (1997).
61. E. Del Monte, E. Costa, G. Di Persio, and I. Donnarumma,“An X-ray imager based on silicon microstrip detector and coded mask,”Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 576, 191-193 (2007).
62. M. Feroci, E. Costa, P. Soffitta, and E. Del Monte,“SuperAGILE: The hard X-ray imager for the AGILE space mission,”Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 581, 728-754 (2007).
63. M. Alnafea, K. Wells, N. M. Spyrou, M. I. Saripan, M. Guy, and P. Hinton,“Preliminary results from a Monte Carlo study of breast tumour imaging with low-energy high-resolution collimator and a modified uniformly-redundant array-coded aperture,”Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 563, 146-149 (2006).
64. M. Alnafea, K. Wells, N. M. Spyrou, and M. Guy,“Preliminary Monte Carlo study of coded aperture imaging with a CZT gamma camera system for scintimammography,”Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 573, 122-125 (2007).
65. A. L. Damato, B. K. P. Horn, and R. C. Lanza,“Coded Source Imaging for Neutrons and X-Rays,”in Proceedings of 2006 IEEE Nuclear Science Symposium Conference Record (IEEE, 2006), 199-203.
66. A. A. Faust, R. E. Rothschild, P. Leblanc, and J. E. McFee,“Development of a Coded Aperture X-Ray Backscatter Imager for Explosive Device Detection,”IEEE Trans. Nucl. Sci. 56, 299-307 (2009).
67. O. P. Ivanov, A. N. Sudarkin, V. E. Stepanov, and L. I. Urutskoev,“Portable X-ray and gamma-ray imager with coded mask: performance characteristics and methods of image reconstruction,”Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 422, 729-734 (1999).
68. S. R. Gottesman, and E. E. Fenimore,“New family of binary arrays for coded aperture imaging,”Appl. Opt. 28, 4344-4352 (1989).
69. J. W. Tukey, The Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications (JSTOR, 1952).
70. J. Woods, M. Ekstrom, T. Palmieri, and R. Twogood,“Best linear decoding of random mask images,”IEEE Trans. Nucl. Sci. 22, 379-383 (1975).
71. W. H. Richardson,“Bayesian-Based Iterative Method of Image Restoration,”J. Opt. Soc. Am. 62, 55-59 (1972).
72. L. B. Lucy,“An iterative technique for the rectification of observed distributions,”The Astronomical Journal 79, 745 (1974).
73. Z. Yao, B. Duan, W. Yan, Y. Song, C. Han, J. Ma, and G. Song,“Linear Reconstruction Methods for Large Thick Aperture Imaging,”presented at MATEC Web Conf. 232, 02030 (2018).
74. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
75. J. C. Yoo, and T. H. Han,“Fast normalized cross-correlation,”Circuits, systems and signal processing 28, 819 (2009).
76. E. Hecht, Optics (Pearson Education, Incorporated, 2017).
77. E. Optics,“Resolution,”https://www.edmundoptics.com.tw/knowledge-center/application-notes/imaging/resolution/.
78. E. Optics,“C Series Fixed Focal Length Lenses,”https://www.edmundoptics.com/f/c-series-fixed-focal-length-lenses/13679/.
79. E. Optics,“UC Series Fixed Focal Length Lenses,”https://www.edmundoptics.com/f/uc-series-fixed-focal-length-lenses/15027/.
80. Basler,“acA5472-17um - Basler ace,”https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca5472-17um/.
81. IDS,“UI-3590CP-C-HQ Rev.2,”http://www.hopetw.com/modules/cart/index.php/product/view/268-UI-3590CP-C-HQ_Rev.2.
82. Rspec,“The Star Analyser 200,”https://www.rspec-astro.com/star-analyser-200/.78.
83. 樂明,高光譜成像應用於屏幕複合式量測系統之研究,國立中央大學光電所碩士論文,中華民國106年。
84. M. Kosch, S. Mäkinen, F. Sigernes, and O. Harang,“Absolute optical calibration using a simple tungsten light bulb: experiment,”in Proceedings of the 30th Annual European Meeting on Atmospheric Studies by Optical Methods, F. Sigernes, D. A. Lorentzen, ed., 50-54.
85. P. Oelhafen, and J. L. Freeouf,”Accurate spectrometer calibration in electron spectroscopy,”J. Vacuum Science & Technology A 1, 96-97 (1983).
86. “Filtering and Smoothing Data,”https://www.mathworks.com/help/curvefit/smoothing-data.html.
87. Le Sun,“hyperspectral data set,”http://lesun.weebly.com/hyperspectral-data-set.html.
88. Y. Zhang,“Solving large-scale linear programs by interior-point methods under the Matlab Environment,”Optim. Methods Softw. 10, 1-31 (1998).
指導教授 孫慶成 楊宗勳 余業緯(Ching-Cherng Sun Tsung-Hsun Yang Yeh-Wei Yu) 審核日期 2020-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明