博碩士論文 108226067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.224.37.68
姓名 巫玟萱(Wen-Hsuan Wu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 用於牙齒頻譜的多點量測之高光譜系統
(Hyperspectral System used for multi-point measurements of the teeth)
相關論文
★ 結合全像光學元件的微型化數位全像顯微鏡★ 隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 頻譜的分析在現今科學與科系中扮演極為重要的角色,透過頻譜的分析我們可以得知待測物的成分組成,或是表面形貌,從生物學、航空攝影、農業分析,都可以看到頻譜分析的作用,而高光譜能採集二維空間中的頻譜資訊,組成一個三維的高光譜數據,在許多領域的量測分析,高光譜扮演極為關鍵的作用。
現今的高光譜成像系統,有些製作技術困難且成本極高,或是量測極為耗時,並不利於現今普及且變動迅速的科學量測,本研究團隊致力於打造製作成本合理,且量測速度快的高光譜成像系統。我們透過編碼孔徑(Coded Aperture)以及閃耀光柵(Blazed Grating)兩個主要原件來實現一個量測迅速且準確的高光譜量測系統。在系統建構的過程中,我們透過三種雷射波段對系統進行波長定位,使用鹵素燈當作標準光源對系統中各種光學元件進行校正,並且在快照式與掃描式高光譜中各取其優勢進行結合,在量測時間與準確度進行取捨,以實現準確且迅速的高光譜量測系統。
摘要(英) Nowadays, the spectrum analysis plays an extremely important role in scientific community. Through the analysis of spectrum, we can know the composition of the object, or the surface morphology, which can be seen from biology, aerial photography, and agricultural analysis. Hyperspectral can collect spectrum information in two-dimensional space, which is different from the traditional spectrometer.
Our research team committed to create a reasonable production cost and measurement High-speed hyperspectral imaging system. We use coded aperture and blazed grating to achieve a rapid and accurate hyperspectral measurement system. In combination, a trade-off is made between measurement time and accuracy to achieve an accurate and rapid hyperspectral measurement system.
關鍵字(中) ★ 高光譜
★ 編碼孔徑
關鍵字(英) ★ Hyperspectral
★ Coded Aperture
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 VII
第一章 緒論 1
1-1 頻譜與色彩 1
1-2 高光譜成像(Hyperspectral Imaging)之發展 2
1-3 編碼孔徑之介紹 5
1-4 研究動機與目的 7
第二章 原理介紹 9
2-1 繞射 9
2-2 光柵與閃耀光柵 10
2-3 編碼孔徑(Coded Aperture) 12
2-3-1 編碼孔徑介紹 12
2-3-2 相關性解碼 15
2-3-3 Richardson–Lucy 反捲積法 16
第三章 編碼孔徑高光譜成像系統 18
3-1 基本原理 18
3-2 系統架構 19
3-2-1 實驗架構 19
3-2-2 MURA 屏幕製作與設計 21
3-2-3 波長定位實驗 21
3-3 編碼孔徑--MURA 24
3-3-1 單個MURA 24
3-3-2 MURA排列規則 26
3-4 MURA模擬 27
3-4-1 Richardson–Lucy 反捲積法 27
3-4-2 頻譜量測極限 30
3-5 實驗架構 36
第四章 編碼孔徑高光譜成像系統校正與驗證 37
4-1 標準光源的校正(Calibration) 37
4-2 快照式 41
4-3 掃描式 43
4-3-1 標準色板驗證 43
4-3-2 假牙量測 68
4-4 色度比較 80
第五章 結論 90
參考文獻 92
中英名詞對照表 96
附錄A 100
參考文獻 [1] D. Mustafi, A. H. Engel, and K. Palczewski, “Structure of cone photoreceptors,” Prog. Retin. Eye Res. 28, 289-302 (2009).
[2] N. Simpson,” Colour and contemporary digital botanical illustration, ” Opt. Laser Technol. 43, 230-336(2011).
[3] H. Grahn, and P. Geladi, Techniques and applications of hyperspectral image analysis (John Wiley & Sons, 2007).
[4] W. D. Hively, G. W. McCarty, J. B. Reeves, M. W. Lang, R. A. Oesterling, and S. R. Delwiche, “Use of Airborne Hyperspectral Imagery to Map Soil Properties in Tilled Agricultural Fields,” Appl. Environ. Soil. Sci. 2011, 1-13 (2011).
[5] B. Fei, Data Handling in Science and Technology (Elsevier, 2020).
[6] X. Hadoux, F. Hui, J. K. H. Lim, and C. L. Masters, “Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease,” Nat. Commun. 10, 1-12 (2019).
[7] L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, ” Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48, 142-159 (2013).
[8] S. Bajwa, P. Bajcsy, P. Groves, and L. Tian, “Hyperspectral image data mining for band selection in agricultural applications,” Trans. ASABE. 47, 895-907 (2004).
[9] J. C. Harsanyi, and C.-I. Chang, “Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach,” IEEE Geosci. Remote. Sens. Lett. 32, 779-785 (1994).
[10] D. Landgrebe, “Hyperspectral image data analysis,” IEEE Signal Process Mag. 19, 17-28 (2002).
[11] D. Manolakis, and G. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19, 29-43(2002).
[12] T. Tumer, T.J. O′Neill, K. Hurley, H. Ogelman, R. Paulos, R. Puetter, I. Kipnis, W. Hamilton, and R. Proctor, “All-sky X-ray and Gamma-ray Astronomy Monitor (AXGAM),” IEEE Trans. Nucl. Sci. 44, 572-576 (1997).
[13] A. A. Faust, R. E. Rothschild, P. Leblanc, and J. E. McFee, “Development of a coded aperture x-ray backscatter imager for explosive device detection,” IEEE Trans. Nucl. Sci. 56, 299-307 (2009).
[14] N. Gehrels, G. Chincarini, P. e. Giommi, K. Mason, J. Nousek, A. Wells, N. White, S. Barthelmy, D. Burrows, and L. Cominsky, “The Swift gamma-ray burst mission,” Astrophys. J. 611, 1005-1020 (2004).
[15] E. Del Monte, E. Costa, G. Di Persio, I. Donnarumma, Y. Evangelista, M. Feroci, M. Frutti, I. Lapshov, F. Lazzarotto, and M. Mastropietro, “An X-ray imager based on silicon microstrip detector and coded mask,” Nucl. Instrum. Methods. Phys. Res. B 576, 191-193 (2007).
[16] M. Alnafea, K. Wells, N. Spyrou, and M. Guy, “Preliminary Monte Carlo study of coded aperture imaging with a CZT gamma camera system for scintimammography,” Nucl. Instrum. Methods. Phys. Res. B 573, 122-125 (2007).
[17] J. S. Hong, S. V. Vadawale, M. Zhang, E. C. Bellm, A. Yousef, J. Noss, J. E. Grindlay, and T. Narita in Secondary, “Laboratory coded-aperture imaging experiments: radial hole coded masks and depth-sensitive CZT detectors,” SPIE 5540 63-72 (2004).
[18] R. H. Dicke, “Scatter-Hole Cameras for X-Rays and Gamma Rays,” Astrophys. J. 153, 101-106 (1968).
[19] H. H. Hopkins, “On the diffraction theory of optical image,” Phys. Rev. Lett. 217, 408-425 (1953).
[20] D. P. Ghai, P. Senthilkumaran, and R. Sirohi, “Single-slit diffraction of an optical beam with phase singularity,” Lasers Eng. 47, 123-126 (2009).
[21] O. Carnal, and J. Mlynek, “Young’s double-slit experiment with atoms: A simple atom interferometer,” Phys. Rev. Lett. 66, 2689-2692 (1991).
[22] D. W. Wilson, P. D. Maker, R. E. Muller, P. Mouroulis, and J. Backlund,” Recent advances in blazed grating fabrication by electron-beam lithography,” SPIE 5173, 115-126(2003).
[23] E. Hecht, Optics (Pearson Education, Incorporated, 2017).
[24] C. Palmer, and E. G. Loewen, Diffraction grating handbook (Newport Corporation New York, 2005).
[25] M. S. D. Smith and K. A. McGreer,” Diffraction Gratings Utilizing Total Internal Reflection Facets in Littrow Configuration,” IEEE Photon. Technol. Lett. 11, 84-86, (1999).
[26] C.F. Kao, S.H. Lu, H.M. Shen, and K.C. Fan, “Diffractive laser encoder with a grating in Littrow configuration,” Jpn. J. Appl. Phys. 47, 1833-1837 (2008).
[27] E. B. Burgh, M. A. Bershady, K. B. Westfall, and K. H. Nordsieck, “Recombination ghosts in littrow configuration: Implications for spectrographs using volume phase holographic gratings,” Publ. Astron. Soc. Pac. 119, 1069-1082 (2007).
[28] M.S.D. Smith and K. A. Mcgreer, “High-Speed Wavelength-Swept Semiconductor Laser Using a Diffraction Grating and a Polygon Scanner in Littrow Configuration,” IEEE Photon. Technol. Lett. 11, 84-86(1999).
[29] E. E. Fenimore and T. M. Cannon, “ Coded aperture imaging with uniformly redundant arrays,” Appl. Opt. 17, 337-347 (1978).
[30] S. R. Gottesman, and E. E. Fenimore, “New family of binary arrays for coded aperture imaging,” Appl. Opt. 28, 4344-4352 (1989).
[31] E. Caroli, J. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino, “Coded aperture imaging in X-and gamma-ray astronomy,” Space Sci. Rev. 45, 349-403 (1987).
[32] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt. Express 21, 10526-10545 (2013).
[33] R. F. Marcia, Z. T. Harmany, and R. M. Willett in Secondary , “Compressive coded aperture imaging,” SPIE 7246, 72460G1-72460G13 (2009).
[34] K.R.Godfrey, ” Correlation methods,” Oxf. 16, 527-534 (1980).
[35] C. Spearman, “Footrule for measuring correlation,” Br. J. Psychol. 2, 89-108 (1906).
[36] A. J. Cohen, and N. C. Handy, “Dynamic correlation,” Mol. Phys. 99, 607-615 (2001).
[37] H.B. Bürgi, and J. D. Dunitz, Structure correlation (John Wiley & Sons, 2008).
[38] J. F. Potter, “The delta function approximation in radiative transfer theory,” Int. J. Atmos. Sci. 27, 943-949 (1970).
[39] A. I. Khuri, “Applications of Dirac′s delta function in statistics,” Int. J. Math. Educ. Sci. Technol. 35, 185-195 (2004).
[40] E. Marchand, “Derivation of the point spread function from the line spread function,” J. Opt. Soc. Am. 54, 915-919 (1964).
[41] J. Santamaría, P. Artal, and J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical–digital method,” J. Opt. Soc. Am. 4, 1109-1114 (1987).
[42] B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46, 1819-1829 (2007).
[43] L. B. Lucy, “An iterative technique for the rectification of observed distributions,” Astron. J. 79, 745-754 (1974).
[44] D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the Richardson–Lucy algorithm,” J. Opt. Soc. Am. 12, 58-65 (1995).
[45] W. Yongpan, F. Huajun, X. Zhihai, L. Qi, and D. Chaoyue, “An improved Richardson–Lucy algorithm based on local prior,” Opt. Laser Technol. 42, 845-849 (2010).
[46] M. Laasmaa, M. Vendelin, and P. Peterson, “Application of regularized Richardson–Lucy algorithm for deconvolution of confocal microscopy images,” J. Microsc. 243, 124-140 (2011).
[47] P. H. Berning, and A. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47, 230-239 (1957).
[48] T. Ohara, M. Abe, S. Wakana, M. Kishi, M. Tsuchiya, and S. Kawasaki , “Two-dimensional field mapping of microstrip lines with a band pass filter or a photonic bandgap structure by fiber-optic EO spectrum analysis system,” presented at the International Topical Meeting on Microwave Photonics MWP 2000, Oxford, United Kingdom, 11-13 September 2000.
[49] S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Single-multi-single mode structure based band pass/stop fiber optic filter with tunable bandwidth,” J. Light. Technol. 28, 3535-3541 (2010).
[50] 董澄逸,利用編碼孔徑之高亮度高光譜成像系統,國立中央大學光電所碩士論文,中華民國109年。
[51] 樂明,高光譜成像應用於屏幕複合式量測系統之研究,國立中央大學光電所碩士論文,中華民國106年。
[52] E. Optics, “UC Series Fixed Focal Length Lenses,” https://www.edmundoptics.com/p/25mm-uc-series-fixed-focal-length-lens/2971/.
[53] Basler, “acA5472-17um-Basler ace,” https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca5472-17um/.
[54] Matlab, “Filtering and Smoothing Data,” https://www.mathworks.com/help/curvefit/smoothing-data.html.
指導教授 余業緯 孫慶成 楊宗勳(Yeh-Wei Yu Ching-Cherng Sun Tsung-Hsun Yang) 審核日期 2021-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明