博碩士論文 108226070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.149.255.162
姓名 王俊傑(Jyun-Jie Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 結合全像光學元件的微型化數位全像顯微鏡
(Miniaturized Digital Holographic Microscope with Holographic Optical Element)
相關論文
★ 用於牙齒頻譜的多點量測之高光譜系統★ 隨讀取位置改變之多頁繞射疊加訊號之相位誤差容忍度分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 本論文提出以全像光學元件取代傳統數位全像術中的分光鏡以及物鏡的功能,目的要讓無透鏡傅氏轉換數位顯微鏡(Lensless Fourier Transform Digital Holographic Microscope)為基礎架構中的訊號影像可以更靠近電子感光元件,接收更多物體高頻資訊,提升系統之解析度(Resolution)與視野(Field of View,簡稱FOV),並且可以減少擷取影像架構之體積。而我們重建影像之數位對焦原理更是用角譜傳遞法(Angular Spectrum Propagation Method)取代單次傅氏轉換(Fourier Transform),以及解決費耐爾繞射公式(Fresnel Diffraction)與夫朗和斐繞射公式(Fraunhofer Diffraction)有傳遞距離限制的不足,來還原訊號影像。最後以實驗與模擬驗證將架構微型化的可能性,希望在未來可以結合手機與平板等手持裝置,取代物鏡實現縮小化以及商業化的目的。
摘要(英) In this thesis, we proposed to replace beam splitter and objective microscope in the traditional digital holographic configuration with holographic optical element. The purpose is to make the signal image in the configuration based on lensless Fourier Transform Digital Holographic Microscope closes to electronic photosensitive element. It can collect higher frequency signal light and makes image device more compact to improve the resolution or field of view of the system. The digital focusing principle that could reconstructed image is Angular Spectrum Propagation Method instead of Fourier Transform to solve the limitation of propagation distance on Fresnel Diffraction or Fraunhofer Diffraction. Finally, experiments and simulations demonstrates the possibility of the miniaturized structure. We hoped that portable devices such as mobile phones and tablets can be combined to replace the objective microscope to achieve the purpose of miniaturization and commercialization in the future.
關鍵字(中) ★ 無透鏡傅氏轉換數位全像顯微鏡
★ 全像光學元件
★ 微型化數位全像顯微鏡
關鍵字(英) ★ lensless Fourier Transform Digital Holographic Microscope
★ holographic optical element
★ Miniaturized Digital Holographic Microscope
論文目次 目錄
摘要 VI
Abstract VII
致謝 VIII
目錄 IX
圖目錄 XII
表目錄 XVI
第一章 緒論 1
1.1 全像術之發展 1
1.2 研究動機 4
第二章 原理介紹 6
2.1 全像術 6
2.2 全像片之角度容忍度 8
2.3 薄全像片與厚全像片 10
2.4 穿透式與反射式全像片 10
2.5 數位全像術之紀錄與重建 12
2.5.1 數位全像術的紀錄限制 13
2.5.2 無透鏡傅氏轉換全像顯微術 14
2.5.3 角譜傳遞法 16
2.6 費耐爾反射方程式 17
第三章 無透鏡傅氏轉換數位全像顯微鏡架構之原理、實驗與模擬 19
3.1 無透鏡傅氏轉換數位全像顯微鏡結合角譜傳遞法重建原理 19
3.2 模擬分析 25
3.2.1 電腦模擬參數設定 25
3.2.2 模擬重建結果 27
3.3 實驗驗證與討論 28
3.3.1 全像光學元件C-RT20 28
3.3.2 實驗架構 31
3.3.3 實驗結果與分析 34
第四章 結合全像光學元件的數位全像顯微鏡之模擬與實驗 36
4.1 模擬分析 36
4.2 實驗架構與原理 38
4.3 實驗結果與討論 47
第五章 結論 54
參考文獻 55
中英名詞對照表 61
參考文獻 參考文獻
[1] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[2] D. Gabor, “Holography, 1948-1971,” Science 177, 299-313 (1972).
[3] E. N. Leith, J. Upatnieks, and K. A. Haines, “Microscopy by wavefront reconstruction,” JOSA 55, 981-986 (1965).
[4] J. W. Goodman, and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[5] J. Cowley, and D. Walker, “Reconstruction from in-line holograms by digital processing,” Ultramicroscopy 6, 71-75 (1981).
[6] V. Kebbel, H.-J. Hartmann, and W. P. Jüptner, “Application of digital holographic microscopy for inspection of micro-optical components,” Proc. SPIE 4398, 189-198 (2001).
[7] B. Kemper, and G. Von Bally, “Digital holographic microscopy for live cell applications and technical inspection,” Appl. Opt. 47, A52-A61 (2008).
[8] X. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. Zhang, and T. Hiruma, “Full-field quantitative phase imaging by white-light interferometry with active phase stabilization and its application to biological samples,” Opt. Lett. 31, 1830-1832 (2006).
[9] N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett. 37, 2016-2018 (2012).
[10] T. Slabý, P. Kolman, Z. Dostál, M. Antoš, M. Lošťák, and R. Chmelík, “Off-axis setup taking full advantage of incoherent illumination in coherence-controlled holographic microscope,” Optics Express 21, 14747-14762 (2013).
[11] A. E. Tippie, A. Kumar, and J. R. Fienup, “High-resolution synthetic-aperture digital holography with digital phase and pupil correction,” Optics Express 19, 12027-12038 (2011).
[12] P. S. Hilaire, S. A. Benton, and M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” JOSA A 9, 1969-1977 (1992).
[13] S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006).
[14] F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550-1552 (2001).
[15] J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179-2181 (2002).
[16] M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000).
[17] M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. 102, 13081-13086 (2005).
[18] V. R. Singh, L. Sui, and A. Asundi, “Compact handheld digital holographic microscopy system development,” presented at International Society for Optics and Photonics, Singapore, Singapore (2010).
[19] T. Bourgade, S. Jianfei, Z. Wang, R. Elsa, and A. Asundi, “Compact Lens-less Digital Holographic Microscope for MEMS Inspection and Characterization,” JoVE (2016).
[20] P. Girshovitz, and N. T. Shaked, “Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy,” Optics Express 21, 5701-5714 (2013).
[21] O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab on a Chip 10, 1417-1428 (2010).
[22] D. Tseng, O. Mudanyali, C. Oztoprak, S. O. Isikman, I. Sencan, O. Yaglidere, and A. Ozcan, “Lensfree microscopy on a cellphone,” Lab on a Chip 10, 1787-1792 (2010).
[23] A. Greenbaum, W. Luo, T. W. Su, Z. Gorocs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat Methods 9, 889-895 (2012).
[24] Z. S. Ballard, Y. Zhang, and A. Ozcan, “Off-axis holography and micro-optics improve lab-on-a-chip imaging,” Light Sci. Appl. 6, e17105-e17105 (2017).
[25] Y. W. Yu, C. C. Sun, P. K. Hsieh, Y. H. Huang, C. Y. Song, and T. H. Yang, “An edge-lit volume holographic optical element for an objective turret in a lensless digital holographic microscope,” Sci. Rep. 10, 1-9 (2020).
[26] A. Banjanovic, “Special Report: Towards universal global mobile phone coverage,” Euromonitor International, 247-257 (2009).
[27] M. Lee, O. Yaglidere, and A. Ozcan, “Field-portable reflection and transmission microscopy based on lensless holography,” Biomed. Opt. Express 2, 2721-2730 (2011).
[28] W. C. Sweatt, “Describing holographic optical elements as lenses,” JOSA 67, 803-808 (1977).
[29] D. Close, “Holographic optical elements,” Opt. Eng. 14, 145408 (1975).
[30] E. Watanabe, K. Hoshino, and S. Takeuchi, “Portable digital holographic microscope using spherical reference beam,” Opt. Rev. 22, 342-348 (2015).
[31] J. W. Goodman, Introduction to Fourier Optics. 3rd eds. (McGraw-Hill, New York, 2002).
[32] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
[33] H. Kogelnik, ‘‘Coupled wave theory for thick hologram gratings,’’ Bell Syst. Tech. J. 48, 2909–2947 (1969).
[34] P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).
[35] C. Gu, J. Hong, I. McMichael, and R. Saxena, ‘‘Cross-talk-limited storage capacity of volume holographic memory,’’ J. Opt. Soc. Am. 9, 1978–1983 (1992).
[36] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, ‘‘Diffraction sensitivity of holograms with random phase encoding,’’ Opt. Commun. 175, 67–74 (2000).
[37] C. C. Sun and W. C. Su, ‘‘Three-dimensional shifting selectivity of random phase encoding in volume holograms,’’ Appl. Opt. 40, 1253– 1260 (2001).
[38] C. C. Sun, C. Y. Hsu, W. C. Su, Y. Ouyang, and J. Y. Chang, ‘‘A novel algorithm for high sensitivity in measuring surface variation based on volume holography,’’ Microwave Opt. Technol. Lett. 34, 319–321 (2002).
[39] C. C. Sun, S. P. Yeh, Y. N. Lin, W. C. Su, and Y. Ouyang, ‘‘High longitudinal selectivity of shifting multiplexing in volume holograms,’’ Opt. Laser Technol. 34, 523–526 (2002).
[40] W. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE 54, 803-804 (1966).
[41] I. Yamaguchi, and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[42] W. H. Southwell, “Validity of the Fresnel approximation in the near field,” J. Opt. Soc. Am. 71, 7–14 (1981).
[43] M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).
[44] U. Schnars, and W. Jueptner, Digital holography (Springer, 2005).
[45] J. W. Goodman, and R. W. Lawrence, “Digital Image Formation from Electronically Detected Holograms,” Appl. Phys. Lett. 11, 77-79 (1967).
[46] M. Gustafsson, M. Sebesta, B. Bengtsson, S. G. Pettersson, P. Egelberg, and T. Lenart, “High-resolution digital transmission microscopy—a Fourier holography approach,” Opt. Lasers Eng. 41, 553-563 (2004).
[47] W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt. 31, 4973-4978 (1992).
[48] G. Pedrini, H. J. Tiziani, and Y. Zou, “Digital double pulse-TV-holography,” Opt. Lasers Eng. 26, 199-219 (1997).
[49] G. Sheoran, A. Anand, and C. Shakher, “Lensless Fourier transform digital holographic interferometer for diffusivity measurement of miscible transparent liquids,” Rev Sci Instrum 80, 053106 (2009).
[50] Y. Zeng, Y. Guo, F. Gao, and J. Zhu, “Principle and application of multiple fractional Fourier transform holography,” Opt. Commun. 215, 53-59 (2003).
[51] M. Sebesta, and M. Gustafsson, “Object characterization with refractometric digital Fourier holography,” Opt. Lett. 30, 471-473 (2005).
[52] D. Dirksen, H. Droste, B. Kemper, H. Delere, M. Deiwick, H. Scheld, and G. Von Bally, “Lensless Fourier holography for digital holographic interferometry on biological samples,” Opt. Lasers Eng. 36, 241-249 (2001).
[53] T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771-778 (2002).
[54] 孫慶成,光電工程概論,全華圖書股份有限公司, 2019年。
[55] G. Pedrini, S. Schedin, and H. J. Tiziani, “Aberration compensation in digital holographic reconstruction of microscopic objects,” J. Mod. Opt. 48, 1035-1041 (2001).
[56] H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” J. Mod. Opt. 55, 2989-3000 (2008).
[57] C. Wagner, S. Seebacher, W. Osten, and W. Jüptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812-4820 (1999).
[58] J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” JOSA A 24, 1617-1622 (2007).
[59] LitiHolo, https://www.litiholo.com/.
[60] F. H. Hsu, C. Y. Han, K. H. Chen, K. Y. Hsu, and J. H. Chen, “Prism-hologram-prism sandwiched recording method for polarization-selective substrate-mode volume holograms with a large diffraction angle,” Optics express 26, 20534-20543 (2018).
[61] Thanh Nguyen, Vy Bui, Van Lam, Christopher B. Raub, Lin-Ching Chang, and George Nehmetallah, “Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection,” Opt. Express 25, 15043-15057 (2017).
指導教授 余業緯 孫慶成 楊宗勳(Yeh-Wei Yu Ching-Cherng Sun Tsung-Hsun Yang) 審核日期 2021-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明