博碩士論文 108282001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.223.209.243
姓名 劉俊佑(Chun-Yu Liu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Spatiotemporal dynamics of aggregation and interface fluctuations of cancer clusters in densifying cancer-endothelial cell mixtures)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 細胞的集體運動在胚胎演化、腫瘤轉移等生物過程中扮演極其重要的角色。在細胞本身的自驅動能力與細胞連結(cell junction)的交互作用之下,細胞形成自主耦合多體系統(active coupled-many body system),並展現極為豐富的多尺度集體合作運動如團簇、漩渦運動、類紊流運動(turbulent-like motion)。在二元細胞混合體中(binary cell mixture),因兩細胞物種間的差異性如運動力或黏著力的不同,細胞混合體可自我分離成細胞團簇,並展現更為複雜的集體運動行為。
此篇論文將探討在二元細胞混合系統中,均勻混合的癌細胞與血管內皮細胞間如何相互作用、如何聚合、及此系統中細胞團簇邊界的時空動力行為。癌細胞相較於血管內皮細胞有較強的運動力與較弱的細胞連結,隨著時間與細胞密度增加,此二元混合系統因細胞聚集而加速並緊接著減緩至冷液體相。在此動力學相轉移的過程中,癌細胞逐漸形成更大的團簇,並增強團簇中的類紊流運動,展現多尺度的群聚現象。在癌細胞的類紊流運動特性與內皮細胞的冷液相結構侷限的交互作用下,癌細胞團簇與血細管內皮細胞間形成多尺度的碎形邊界。藉由型態指標(shape index)和非整數維度(fractal dimension)的分析發現,碎形邊界的非整數維度與細胞團簇大小呈正比關係。細胞隨團簇邊界的速度差亦呈現自我相似的特性,隨著癌細胞團簇的增長,細胞團簇邊界可展現更長尺度的擾動,並導致更為快速的邊界速度差增長。此外,因細胞分裂造成的過擁擠與細胞動力減緩,非整數維度與團簇邊界的速度差隨著時間逐漸被抑制。
摘要(英) Fluctuating interfaces have been widely observed in various nonlinear media such as solid-liquid interfaces during solidification, paper burning fronts, and passive or active binary mixtures after segregation. Multiscale interface fluctuations are self-organized under the interplay of coherence generated by different mutual couplings on each side of the interface and the disorder generated by stochastic agitations or passive/active forces. In binary cell mixtures, due to different cell motilities and cell-cell couplings of two types of cells, two types of cells can segregate into clusters. Past studies on binary cell mixtures mainly focused on the temporal evolutions of segregated cluster size and the degree of segregation. Nevertheless, the generic behaviors of multiscale cluster aggregation and fluctuating cluster boundaries, and their correlation to the turbulent-like cell motion down to the microscopic scale, are still unexplored.
In this work, the above issues are experimentally unraveled by observing the cancer-endothelia cell mixture from the randomly distributed dilute state. It is found that, with increasing time, cancer cells (CCs) gradually aggregate into larger clusters exhibiting fractal cluster boundaries, associated with the transition to scale-free cluster size distributions. The interaction of multiscale turbulent-like CC motions in CC clusters and excluded volume constraints from surrounding endothelial cells (ECs) is the key for generating the fractal structure and multiscale spatial velocity fluctuations of CC cluster boundaries. Larger CC clusters allow stronger longer-scale fluctuations with increasing scaling exponents of position and velocity fluctuations of CC cluster boundaries, which can be suppressed by cell crowding through cell proliferation.
關鍵字(中) ★ 二元細胞混合體
★ 集體運動
★ 邊界波動
關鍵字(英) ★ Binary cell mixture
★ Collective motion
★ Interface fluctuation
論文目次 Contents
1. Introduction ...1
2. Background ...4
2.1 Fluctuating interface ...4
2.2 Passive and active binary mixtures ...5
2.3 Cell monolayer ...6
2.4 Binary cell mixture ...7
3. Experiment and Analysis ...10
3.1 Cell culture ...10
3.2 Cancer-endothelial cell mixture ...11
3.3 Observation system ...13
3.4 Fixed fluorescent image ...15
3.5 Data analysis ...16
3.5.1 Cell dynamics ...16
3.5.2 Cluster boundary identification ...17
4. Results and Discussion ...21
4.1 Aggregating cancer cell (CC) clusters ...21
4.2 Multiscale structure and motion fluctuations of CC cluster boundaries ...24
4.3 Turbulent-like CC motion ...29
4.4 Correlation of multiscale CC motions and cluster boundary fluctuations ...36
5. Conclusion ...39
Bibliography ...41
Appendix ...46
參考文獻 [1] A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, New York, 1995).
[2] T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach to Turbulence (Cambridge University Press, Cambridge, UK, 1998).
[3] S. He, G. L. M. K. S. Kahanda, and P.-Z. Wong, Roughness of Wetting Fluid Invasion Fronts in Porous Media, Phys. Rev. Lett. 69, 3731 (1992).
[4] J. Zhang, Y.-C. Zhang, P. Alstrøm, and M. T. Levinsen, Modeling forest fire by a paper-burning experiment, a realization of the interface growth mechanism, Physica A 189, 383 (1992).
[5] M. Rubin-Zuzic, G. E. Morfill, A. V. Ivlev, R. Pompl, B. A. Klumov, W. Bunk, H. M. Thomas, H. Rothermel, O. Havnes, and A. Fouquét, Kinetic development of crystallization fronts in complex plasmas, Nat. Phys. 2, 181 (2006).
[6] W. Wang, H. W. Hu, and L. I, Surface-Induced Layering of Quenched 3D Dusty Plasma Liquids: Micromotion and Structural Rearrangement, Phys. Rev. Lett. 124, 165001 (2020).
[7] T. A. Witten, Jr. and L. M. Sander, Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, Phys. Rev. Lett. 47, 1400 (1981).
[8] A. E. Patteson, A. Gopinath, and P. E. Arratia, The propagation of active-passive interfaces in bacterial swarms, Nat. Commun. 9, 5373 (2018).
[9] D. H. Rothman, Deformation, Growth, and Order in Sheared Spinodal Decomposition, Phys. Rev. Lett. 65, 3305 (1990).
[10] H. Tanaka, Double Phase Separation in a Confined, Symmetric Binary Mixture: Interface Quench Effect Unique to Bicontinuous Phase Separation, Phys. Rev. Lett. 72, 3690 (1994).
[11] D. A. Beysens, G. Forgacs, and J. A. Glazier, Cell sorting is analogous to phase ordering in fluids, Proc. Natl. Acad. Sci. USA 97, 9467 (2000).
[12] E. Méhes, E. Mones, V. Németh, and T. Vicsek, Collective motion of cells mediates segregation and pattern formation in co-cultures, PLoS One 7, e31711 (2012).
[13] C. Chatelain, T. Balois, P. Ciarletta, and M. Ben Amar, Emergence of microstructural patterns in skin cancer: A phase separation analysis in a binary mixture, New J. Phys. 13, 115013 (2011).
[14] E. Mones, A. Czirók, and T. Vicsek, Anomalous segregation dynamics of self-propelled particles, New J. Phys. 17, 063013 (2015).
[15] C. P. Beatrici, R. M. C. de Almeida, and L. G. Brunnet, Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics, Phys. Rev. E 95, 032402 (2017).
[16] A. J. Kabla, Collective cell migration: leadership, invasion and segregation, J. R. Soc. Interface 9, 3268 (2012).
[17] J. M. Belmonte, G. L. Thomas, L. G. Brunnet, R. M. C. de Almeida, and H. Chaté, Self-Propelled Particle Model for Cell-Sorting Phenomena, Phys. Rev. Lett. 100, 248702 (2008).
[18] C. Strandkvist, J. Juul, B. Baum, A. Kabla, and T. Duke, A kinetic mechanism for cell sorting based on local variations in cell motility, Interface Focus 4, 20140013 (2014).
[19] P. Friedl and D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol. 10, 445 (2009).
[20] A. Labernadie et al., A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion, Nat. Cell Bio. 19, 224 (2017).
[21] D. T. Tambe et al., Collective cell guidance by cooperative intercellular forces, Nat. Mater. 10, 469 (2011).
[22] A. Haeger, M. Krause, K. Wolf, and P. Friedl, Cell jamming: Collective invasion of mesenchymal tumor cells imposed by tissue confinement, Biochim. Biophys. Acta 1840, 2386 (2014).
[23] O. Ilina and P. Friedl, Mechanisms of collective cell migration at a glance, J. Cell Sci. 122, 3203 (2009).
[24] H. Y. Chen, Y. T. Hsiao, S. C. Liu, T. Hsu, W. Y. Woon, and L. I, Enhancing Cancer Cell Collective Motion and Speeding up Confluent Endothelial Dynamics through Cancer Cell Invasion and Aggregation, Phys. Rev. Lett. 121, 018101 (2018).
[25] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J. Fredberg, and D. A. Weitz, Glass-like dynamics of collective cell migration, Proc. Natl. Acad. Sci. USA 108, 4714 (2011).
[26] J. A. Park et al., Unjamming and cell shape in the asthmatic airway epithelium, Nat. Mater. 14, 1040 (2015).
[27] S. Garcia, E. Hannezo, J. Elgeti, J. F. Joanny, P. Silberzan, and N. S. Gov, Physics of active jamming during collective cellular motion in a monolayer, Proc. Natl. Acad. Sci. USA 112, 15314 (2015).
[28] A. Hayer, L. Shao, M. Chung, L.-M. Joubert, H. W. Yang, F.-C. Tsai, A. Bisaria, E. Betzig, and T. Meyer, Engulfed cadherin fingers are polarized junctional structures between collectively migrating endothelial cells, Nat. Cell Biol. 18, 1311 (2016).
[29] B. Li and S. X. Sun, Coherent motions in confluent cell monolayer sheets, Biophys. J. 107, 1532 (2014).
[30] G. Duclos, C. Erlenkamper, J. F. Joanny, and P. Silberzan, Topological defects in confined populations of spindle-shaped cells, Nat. Phys. 13, 58 (2017).
[31] A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D. K. Fygenson, and B. I. Shraniman, Collective and single cell behavior in epithelial contact inhibition, Proc. Natl. Acad. Sci. USA 109, 739 (2012).
[32] A. Szabó, R. Ünnep, E. Méhes, W. O. Twal, W. S. Argraves, Y. Cao, and A. Czirók, Collective cell motion in endothelial monolayers, Phys. Biol. 7, 046007 (2010).
[33] S. E. Leggett, Z. J. Neronha, D. Bhaskar, J. Y. Sim, T. M. Perdikari, and I. Y. Wong, Motility-limited aggregation of mammary epithelial cells into fractal-like clusters, Proc. Natl. Acad. Sci. USA 116, 17298 (2019).
[34] D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning, A density-independent rigidity transition in biological tissues, Nat. Phys. 11, 1074 (2015).
[35] W. K. Chang, C. Carmona-Fontaine, and J. B. Xavier, Tumour stromal interactions generate emergent persistence in collective cancer cell migration, Interface Focus 3, 20130017 (2013).
[36] J. W. Baish and R. K. Jain, Fractals and cancer, Persp. Cancer Res. 60, 3683 (2000).
[37] F. E. Lennon, G. C. Cianci, N. A. Cipriani, T. A. Hensing, H. J. Zhang, C.-T. Chen, S. D. Murgu, E. E. Vokes, M. W. Vannier, and R. Salgia, Lung cancer—a fractal viewpoint, Nat. Rev. Clin. Oncol. 12, 664 (2015).
[38] A. Chan and J. A. Tuszynski., Automatic prediction of tumour malignancy in breast cancer with fractal dimension, R. Soc. Open Sci. 3, 160558 (2016).
[39] C. Y. Liu, H. Y. Chen, and L. I, Scale-free aggregation and interface fluctuations of cancer clusters in cancer-endothelial cell mixtures: From the dilute state to confluent monolayer, Phys. Rev. Research 3, L032050 (2021).
[40] S. C. Liu, T. Hsu, Y. S. Chang, A. K. Chung, S. S. Jiang, C. N. OuYang, C. H. Yuh, C. Hsueh, Y. P. Liu, and N. M. Tsang, Cytoplasmic LIF reprograms invasive mode to enhance NPC dissemination through modulating YAP1-FAK/PXN signaling, Nat. Commun. 9, 5105 (2018).
[41] W. Thielicke and E. J. Stamhuis, http://PIVlab.blogspot.com.
[42] P. Bak, How Nature Works—The Science of Self-Organized Criticality (Oxford University Press, Oxford, UK, 1977); H. J. Jensen, Self-Organized Criticality (Cambridge University Press, New York, 1998).
指導教授 伊林(Lin I) 審核日期 2022-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明