博碩士論文 108285001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:3.128.78.41
姓名 董奕賢(Yi-Shian Dong)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 Hougaard 過程之衰變分析
(Hougaard Processes for Degradation Analysis)
相關論文
★ 加速不變原則之偏斜-t過程★ 穩定過程之衰變分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-5以後開放)
摘要(中) 推論高可靠度產品壽命資訊是衰變分析的主要目的,其中定義產品的壽命為衰變路徑首次超過特定門檻值的時間 (first-passage-time, FPT)。伽瑪 (gamma) 以及逆高斯 (inverse Gaussian) 過程是衰變分析中經常使用來分析單調的衰變資料,因此本論文考慮更廣義的 Hougaard 過程,涵蓋伽瑪以及逆高斯過程為特例。由於 Hougaard 過程的機率密度函數涉及難以處理的無窮級數,以致於 Hougaard 過程的 FPT 分布常藉由 Birnbaum-Saunders (BS)分布來近似,但缺乏理論基礎來衡量 BS 近似的各階動差。本論文推導出 Hougaard 過程之 FPT 分布的各階動差,藉此計算出 BS 近似的差異與收斂速度。這些收斂條件恰好與 Hougaard 分布的古典收斂結果相吻合。此外亦證明 Hougaard 過程之 FPT 一階動差的 BS 近似恆大於其確切的動差,且為 FPT 分布的各階動差與其 BS 近似之間的差異,提供了以指數積分 (exponential integral) 來表示的上界。

由於 BS近似的 FPT 分布,其動差具有簡潔的表達式,因此 BS 近似廣泛應用於 (加速) 衰變試驗之最佳實驗計畫。在大樣本情況下,一階近似 (亦即 delta) 方法常用來近似產品壽命估計量的精確度 (即目標函數)。然而當衰變試驗的樣本數很少時,採用二階的近似方法可以大幅度地改進其一階近似。根據泰勒展開式及最大概似估計量的漸近常態性,在衰變分析中常用之隨機過程衍生出的各階目標函數,皆可歸納出特定的結構。針對這樣的目標函數,可以理論導出在實驗成本限制下,最佳實驗計畫之測試樣本數、量測次數以及量測頻率。同時以數值結果呈現在實驗成本限制下,以一階及二階近似為目標函數,其最佳實驗計畫存在著顯而易見的差異。

加速衰變試驗常用於評估加速變數對高可靠度產品壽命的影響程度,而直覺上的兩基本性質:應力的變化不改變壽命分布以及壽命分布的隨機次序 (stochastic ordering),並非文獻上常用的加速衰變模型都能滿足。因此本論文提出加速不變 (accelerated invariance) 原則,以確保加速衰變模型具有此兩基本性質,並應用至 Houggard 過程。除此之外, Houggard 過程之 (加速) 衰變模型的最佳試驗計畫,其需求性在實際應用上日趨重要。本論文通過有理化參數,推導出其費雪訊息矩陣 (Fisher information matrix) 以利未來研究。
摘要(英) Hougaard processes, which include gamma and inverse Gaussian processes as special cases, as well as the moments of the corresponding first-passage-time (FPT) distributions, are commonly used in degradation analysis. Because the probability density function of the Hougaard process involves an intractable infinite series, the Birnbaum-Saunders (BS) distribution is often used to approximate its FPT distribution. This thesis derives the finite moments of FPT distributions based on Hougaard processes, providing a theoretical justification for BS approximation in terms of convergence rates. Further, it can be shown that the first moment of the FPT distribution for the Hougaard process, when approximated by the BS distribution, is always larger. It also provides a sharp upper bound for the difference using an exponential integral. The conditions for convergence coincidentally elucidate the classical convergence results of Hougaard distributions.

Optimal cost-constrained test plan is of practical concern in degradation test for highly reliable products. The first-order (i.e., delta) method is often used to approximate the precision of the estimated quantity of interest for the product′s lifetime (i.e., objective function). When the degradation data are of small size, the approximation can be essentially improved by the second-order approximation. According to Taylor expansion and asymptotic normality of maximum likelihood estimators, the objective function of each order approximation derived from many stochastic processes shares the specific structure in degradation analysis. For such objective functions, the optimal cost-constrained test plan (to determine the measurement frequency, the number of measurements and sample size) can be theoretically obtained under the explicit relationships between experimental costs and model parameters. The numerical results illustrate the dramatic differences of the optimal cost-constrained test plans using the first- and second-order approximations.

Accelerated degradation tests (ADTs) are widely used to assess lifetime information under normal use conditions for highly reliable products. The two fundamental assumptions in ADTs that changing stress levels does not affect the underlying distribution family and that there is stochastic ordering for the life distributions at different stress levels, may not hold for all accelerated degradation models. Therefore, the acceleration invariance principle for ADTs is proposed to ensure the validity of these two assumptions. Furthermore, to find the optimal cost-constrained test plan for the (accelerated) degradation model using the Houggard process, this thesis applies the technique of rationalizing parameters to derive its Fisher information matrix.
關鍵字(中) ★ 特徵函數
★ 曲線積分
★ 指數分散模型
★ 超幾何函數
★ 廣義 Kampé de Fériet 函數
★ Karush- Kuhn-Tucker 條件
★ Laurent 級數
★ 均方差
★ 平均失效時間
★ Meijer G- 函數
★ 留數
★ 抽樣分布
★ Stirling 數
★ 隨機次序
★ 總試驗時間
關鍵字(英) ★ characteristic function
★ contour integration
★ exponential dispersion model
★ hypergeometric function
★ generalized Kampé de Fériet function
★ Karush-Kuhn-Tucker conditions
★ Laurent series
★ mean squares error
★ mean-time-to-failure
★ Meijer G-function
★ residue
★ sampling distribution
★ Stirling numbers
★ stochastic ordering
★ total time on test
論文目次 1 Introduction 1
1.1 Background 1
1.2 Literature Review 2
1.3 Motivation 4
1.4 Overview 6
2 The First-Passage-Time Moments for Hougaard Process and its Birnbaum-Saunders Approximation 7
2.1 Hougaard Processes and FPT Moments 7
2.1.1 Hougaard Distributions and Processes 7
2.1.2 FPT Moments 9
2.2 The Birnbaum-Saunders Approximation 21
2.3 Numerical Examples 24
2.4 Concluding Remarks 26
2.5 Appendix 26
3 Cost-Constrained Optimal Test Planning Using Second-Order Approximation in Degradation Analysis 31
3.1 Motivation and Problem Formulation 31
3.1.1 The First Two Order Approximate Results 31
3.1.2 Motivating Example 32
3.1.3 Cost-Constrained Optimization 34
3.2 The Optimal Test Planning 35
3.3 Applications of Special Cases 46
3.3.1 The First-Order AMSE in Large Samples 46
3.3.2 Exact MSE in Small Samples 50
3.4 Illustrative Examples 52
3.5 Concluding Remarks 54
3.6 Appendix 54
4 Acceleration Invariance Principle for Hougaard Processes in Degradation Analysis 60
4.1 Accelerated Invariance Principle 60
4.2 AI Principle for ADTs for Continuous Monotonic Processes 63
4.2.1 The AI Principle for ADTs for Hougaard Processes 65
4.3 Simulation Study 67
4.4 Fisher Information Matrix for Hougaard Process 75
4.4.1 The First Two Derivatives of Meijer G-Function 76
4.4.2 Fisher Information Matrix Based on Rational α 84
4.5 Concluding Remarks 87
4.6 Appendix 87
5 Conclusion and Future Research 89
5.1 Contributions and Implications 89
5.2 Future Research 90
Bibliography 92
參考文獻 Ancarani, L. U. and Gasaneo, G. (2010). Derivatives of any order of the hypergeometric function pFq(a1,..., ap;b1..., bq; z) with respect to the parameters ai and bi, Journal of Physics A: Mathematical and Theoretical 43, 082510.

Bar-Lev, S. K. and Enis, P. (1986). Reproducibility and natural exponential families with power variance functions, The Annals of Statistics 14, 1507–1522.

Birnbaum, Z. W. and Saunders, S. C. (1969). A new family of life distributions, Journal of Applied Probability 6, 319–327.

Capała, K. and Dybiec, B. (2021). Random acceleration process on finite intervals under stochastic restarting, Journal of Statistical Mechanics: Theory and Experiment 2021, 083216.

Castillo, E., Iglesias, A. and Ruíz-Cobo, R. (2005). Functional equations in applied sciences, Amsterdam: Elsevier.

Chernoff, H. (1953). Locally optimal designs for estimating parameters. Annals of Mathematical Statistics, 24, 586–602.

Chhikara, R. S. and Folks, L. (1989). The inverse Gaussian distribution: theory, methodology, and applications, New York: Marcel Dekker.

Çinlar, E. (1980). On a generalization of gamma processes, Journal of Applied Probability 17, 467–480.

Condamin, S., Benichou, O., Tejedor, V., Voituriez, R. and Klafter, J. (2007). First-passage times in complex scale-invariant media, Nature 450, 77–80.

Cox, D. R., and Reid, N. (1987). Parameter orthogonality and approximate conditional inference (with discussion). Journal of the Royal Statistical Society B 40, 1–39.

Dunn, P. K. and Smyth, G. K. (2008). Evaluation of Tweedie exponential dispersion model densities by Fourier inversion, Statistics and Computing 18, 73–86.

Feinberg, A. A. and Widom, A. (1996). Connecting parametric aging to catastrophic failure through thermodynamics, IEEE Transactions on Reliability 45, 28–33.

Fook Chong, S. M. C. (1992). A study of Hougaard distributions, Hougaard processes and their applications, unpublished master dissertation, McGill University, Department of Mathematics and Statistics.

Gould, H. W. (1978). Euler’s formula for nth differences of powers, The American Mathematical Monthly 85, 450–467.

Graham, R. L., Knuth, D. E. and Patashnik, O. (1994). Concrete mathematics: a foundation for computer science (2nd ed.), Reading: Addison-Wesley.

Heston, S. (1993). Invisible parameters in option prices, The Journal of Finance 48, 933–947.

Hougaard, P. (1986). Survival models for heterogeneous populations derived from stable distributions, Biometrika 73, 387–396.

Hougaard, P., Lee, M. L. T. and Whitmore, G. A. (1997). Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics 53, 1225–1238.

Jiang, P., Wang, B. and Wu, F. (2019). Inference for constant-stress accelerated degradation test based on gamma process, Applied Mathematical Modelling 67, 123–134.

Jørgensen, B. (1997). Theory of dispersion models, London: Chapman & Hall.

Klinger, D. J. (1992). Failure time and rate constant of degradation: an argument for the inverse relationship, Microelectronics Reliability 32, 987–994.

Küchler, U. and Sørensen, M. (1997). Exponential families of stochastic processes, New York: Springer.

Lawless, J. and Crowder, M. (2004). Covariates and random effects in a gamma process model with application to degradation and failure, Lifetime Data Analysis 10, 213–227.

Lee, M. L. T. and Whitmore, G. A. (1993). Stochastic processes directed by randomized time, Journal of Applied Probability 30, 302–314.

Leiva, V. (2016). The Birnbaum-Saunders distribution, New York: Academic Press.

Ling, M. H., Tsui, K. L. and Balakrishnan, N. (2015). Accelerated degradation analysis for the quality of a system based on the gamma process, IEEE Transactions on Reliability
64, 463–472.

Lu, C. J. and Meeker, W. Q. (1993). Using degradation measures to estimate a time-to-failure distribution, Technometrics 35, 161–174.

LuValle, M. J., Welsher, T. L. and Svoboda, K. (1988). Acceleration transforms and statistical kinetic models, Journal of Statistical Physics 52, 311–330.

Marshall, A. W. and Olkin, I. (2007). Life distributions: structure of nonparametric, semiparametric, and parametric families, New York: Springer.

Meeker, W. Q. and Escobar, L. A. (1998). Statistical methods for reliability data, New York: John Wiley & Sons.

Menshikov, M. and Williams, R. J. (1996). Passage-time moments for continuous nonnegative stochastic processes and applications, Advances in Applied Probability 28, 747–762.

Nelson, W. (1980). Accelerated life testing step-stress models and data analyses, IEEE Transactions on Reliability 29, 103–108.

Nelson, W. (1981). Analysis of performance-degradation data from accelerated tests, IEEE Transactions on Reliability 30, 149–155.

Palayangoda, L. K., Butler, R. W., Ng, H. K. T., Yang, F. and Tsui, K. L. (2022). Evaluation of mean-time-to-failure based on nonlinear degradation data with applications,IISE Transactions 54, 286–302.

Pan, Z. and Balakrishnan, N. (2010). Multiple-steps step-stress accelerated degradation modeling based on Wiener and gamma processes, Communications in Statistics—Simulation and Computation 39, 1384–1402.

Park, C. and Padgett, W. J. (2005). Accelerated degradation models for failure based on geometric Brownian motion and gamma processes, Lifetime Data Analysis 11, 511–527.

Peng, C. Y. (2015). Inverse Gaussian processes with random effects and explanatory variables for degradation data, Technometrics 57, 100–111.

Peng, C. Y. and Cheng, Y. S. (2016). Threshold degradation in R using iDEMO in Computational Network Analysis With R: Applications in Biology, Medicine and Chemistry (Dehmer, M., Shi, Y. and Emmert-Streib, F., eds.), Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 83–124.

Peng, C. Y. and Cheng, Y. S. (2021). Profile optimum planning for degradation analysis, Naval Research Logistics 68, 951–962.

Peng, C. Y., Dong, Y. S. and Fan, T. H. (2023). The first-passage-time moments for the Hougaard process and its Birnbaum-Saunders approximation, Statistics and Computing
33:59, 1–15.

Polizzi, N. F., Therien, M. J. and Beratan, D. N. (2016). Mean first-passage times in biology, Israel Journal of Chemistry 56, 816–824.

Prasad, M., Gopika, V., Sridharan, A., Parida, S. and Gaikwad, A. J. (2018). Hougaard process stochastic model to predict wall thickness in flow accelerated corrosion, Annals
of Nuclear Energy 117, 247–258.

Prasad, M., Gopika, V. and Shridharan, A. (2020). Application of Hougaard stochastic model for flow-accelerated corrosion wall thinning in an orifice, Life Cycle Reliability and Safety Engineering 9, 349–352.

Prudnikov, A. P., Brychkov, Yu. A. and Marichev, O. I. (1992). Integrals and series, vol. 4: direct Laplace transforms, New York: Gordon and Breach.

R Core Team (2023). R: a language and environment for statistical computing, Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org.

Schott, J. R. (2016). Matrix analysis for statistics (3rd ed.), Hoboken: John Wiley & Sons.

Stefanov, V. T. (1985). On the moments of some first-passage times, Journal of Applied Probability 22, 461–466.

Tsai, C. C., Tseng, S. T. and Balakrishnan, N. (2012). Optimal design for degradation tests based on gamma processes with random effects, IEEE Transactions on Reliability 61, 604–613.

Tseng, S. T., Balakrishnan, N. and Tsai, C. C. (2009). Optimal step-stress accelerated degradation test plan for gamma degradation processes, IEEE Transactions on Reliability 58, 611–618.

Tseng, S. T. and Lee, I. C. (2016). Optimum allocation rule for accelerated degradation tests with a class of exponential-dispersion degradation models, Technometrics 58, 244–254.

Tweedie, M. C. K. (1957). Statistical properties of inverse Gaussian distributions. I, The Annals of Mathematical Statistics 28, 362–377.

Tweedie, M. C. K. (1984). An index which distinguishes between some important exponential families, in Statistics: Applications and New Directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference (Ghosh, J. K. and Roy, J. eds.), Calcutta: Indian Statistical Institute, 579–604.

Vinogradov, V. (2004). On the power-variance family of probability distributions, Communications in Statistics—Theory and Methods 33, 1007–1029.

Wang, H., Teng, K. and Zhou, Y. (2018). Design an optimal accelerated-stress reliability acceptance test plan based on acceleration factor, IEEE Transactions on Reliability 67, 1008–1018.

Wang, H., Wang, G. and Duan, F. (2016). Planning of step-stress accelerated degradation test based on the inverse Gaussian process, Reliability Engineering and System Safety 154, 97–105.

Wang, H. and Xi, W. (2016). Acceleration factor constant principle and the application under ADT, Quality and Reliability Engineering International 32, 2591–2600.

Wang, H., Zhao, Y., Ma, X. and Wang, H. (2017). Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion, Reliability Engineering and System Safety 164, 45–54.

Whitmore, G. A. and Schenkelberg, F. (1997). Modelling accelerated degradation data using Wiener diffusion with a time scale transformation, Lifetime Data Analysis 3, 27–45.

Yang, C. H., Hsu, Y. H. and Hu, C. H. (2022). Mis-specification analyses and optimum degradation test plan for Wiener and inverse Gaussian processes, Communications in
Statistics—Theory and Methods, http://doi:10.1080/03610926.2022.2091782.

Ye, Z., Chen, L., Tang, L. and Xie, M. (2014). Accelerated degradation test planning using the inverse Gaussian process, IEEE Transactions on Reliability 63, 750–763.

Yu, H. F. and Tseng, S. T. (1999). Designing a degradation experiment, Naval Research Logistics 46, 689–706.
指導教授 樊采虹 彭健育(Tsai-Hung Fan Chien-Yu Peng) 審核日期 2023-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明