博碩士論文 108322027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.221.101.3
姓名 陳奕翔(Yi-Hsiang Chem)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 含變頻滑動支承及抗拉拔裝置橋梁在水平雙向震波下之振動台實驗
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 多項式摩擦單擺支承(polynomial friction pendulum isolator,PFPI),其曲面為六次方多項式的新式變頻滑動隔震支承,利用回復勁度遞減之軟化段減緩結構加速度反應,亦可藉由回復勁度遞增之硬化段降低結構位移反應。過去研究已證實PFPI應用於等高橋墩與不等高橋墩橋梁中,受近域與遠域震波皆發揮良好的隔震效果。
本研究考慮含PFPI之等高與不等高橋梁受水平雙向地震力作用下之反應。並為確保PFPI不會因地震力過大造成支承位移超出曲盤範圍或使支承上下分離,進而產生落橋或是結構物傾倒,設計一抗拉拔裝置,當地震力太大時,依靠抗拉拔裝置避免支承水平分離,並提供拉力使支承能夠返回曲盤。
本研究採用新隱式非線性有限元素動力分析方法 (New Implicit Nonlinear Dynamic finite element method , NINDFEM) 建立有限元素分析模型,並與振動台實驗有良好的擬合。此外,本研究亦比較比較不同橋梁情況下PFPI之效果與抗拉拔裝置作用的情形,針對比較結果,給予設計上的建議。
摘要(英) Polynomial friction pendulum isolator (PFPI) , which curve is six power polynomials , is a new kind of variable frequency pendulum isolator. Using the softening section to reduce the acceleration response of the structure , on the other hand , the hardened section reduces the structural displacement response. Research in past has confirmed that when PFPI applied on regular and irregular bridge. Both the near and far seismic waves exert good isolation effects.
This study considers the response of regular and irregular bridge containing PFPI under horizontal seismic waves. And in order to ensure that the PFPI will not cause the support displacement to exceed the boundary of the disk due to the excessive seismic waves or separate the support. Then the bridge will fall or the structure will overturn. Design an uplift restraint device. When the seismic force is too large, the uplift restraint device is used to avoid horizontal separation of the support, and provide tensile force to enable the support to return to the curved plate.
In this study, the New Implicit Nonlinear Dynamic finite element method (NINDFEM) is used to establish the finite element analysis model, and it fits well with the shaking table experiment. In addition, this study also compares the effect of PFPI and the effect of the uplift restraint device under different bridge conditions, and gives design suggestions based on the comparison results.
關鍵字(中) ★ 變頻式隔震支承
★ 抗拉拔裝置
★ 不等高橋墩橋梁
★ 新隱式非線性有限元素動力分析方法
★ 振動台實驗
關鍵字(英) ★ variable frequency pendulum isolator
★ uplift restraint device
★ irregular bridge
★ New Implicit Nonlinear Dynamic finite element method
★ shaking table experiment
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 近遠域震波特性 3
1.2.2 摩擦單擺支承 3
1.2.3 最佳化參數搜尋 4
1.2.4 新隱式非線性有限元素動力分析方法(New Implicit Nonlinear Dynamic finite element method , IDFEM) 5
1.2.5 抗拉拔裝置 6
1.3 研究內容 7
第二章 多項式摩擦單擺支承與抗拉拔裝置的設計 8
2.1 支承力學行為 9
2.2 瞬時隔震頻率 12
2.3 多項式摩擦單擺支曲面函數與特性 13
2.4 PFPI最佳化參數搜尋 16
2.5 抗拉拔裝置 17
第三章 隱式非耦合有限元素動力分析方法 24
3.1 隱式非耦合運動方程式 24
3.2 隱式直接積分法 27
3.2.1 Newmark直接積分法 28
3.2.2 Bathe複合積分法 29
3.3 空間構架元素 30
3.4 滑動元素 33
3.4.1 黏滯階段 33
3.4.2 滑動階段 35
3.4.3 分離階段 39
3.4.4 摩擦係數之參數分析 41
3.5 彈簧與支承元素 42
3.5.1 可拉伸開孔彈簧元素 (Hook Spring) 44
第四章 橋梁模型振動台實驗 48
4.1 實驗設備與實驗試體 48
4.2 抗拉拔裝置設計 50
4.3 實驗測量儀器及配置 51
4.4 實驗系統識別 51
4.5 輸入震波 52
第五章 討論與比較 76
5.1 有限元素模型與實驗模型結果比較 76
5.1.1 案例一、案例二、案例三有限元素模型建立 76
5.1.2 分析與實驗結果比較 78
5.2 案例一與案例二實驗結果比較 79
5.3 案例二與案例三實驗結果比較 80
5.4 拉桿效果比較 80
5.5 在水平雙向震波下之隔震效能 81
5.6 小結 82
第六章 討論與比較 216
6.1 結論 216
6.2 建議及未來研究方向 217
參考文獻 218
參考文獻 1. Ian G. Buckle and Ronald L. Mayes (1990) “Seismic Isolation History, Application, and Performance—A World View.” Earthquake Spectra
2. 盧煉元、鍾立來 (1999),”國內外結構控制技術之進展”
3. Celebi, M. (1996) “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” The Structural Design of Tall Buildings, 5(2), 95-109.
4. Martelli, A. and Forni, M. (1998) “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
5. Kelly, J. M. (1998) “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
6. Fujita, T. (1998) “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1(3), 295-300.
7. Asher, J.W. , Hoskere, S.N. , Ewing, R.D. , Mayes, R.L. , Button, M.R. , Van Volkingburg, D.R. , “Performance of Seismically Isolated Structures in the 1994 Northridge and 1995 Kobe Earthquakes. (1997).” Proceedings of Structures Congress XV (ASCE), 1128-1132.
8. Bruneau, M., Wilson, J. C. , and Tremblay, R. (1996). “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713.
9. Otsuka, H. and et al. (1997). “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33.
10. Lee, G. C. and Loh, C. (1999). “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
11. Kawashima, K. (2002). “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197.
12. Kosa, K., Tazaki, K. and Yamaguchi, E. (2002). “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154.
13. Ghobarah, A. and Ali, H. M. (1988). “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166.
14. Naeim, F. and Kelly, J. M. (1999). “Design of Seismic Isolated Structures: From Theory to Practice.”
15. Zheng Liu, Tao Wang, (2011) . “Application of Lead Rubber Bearing in Curved Continuous Bridge.” Advanced Materials Research
16. R.S. Jangid,(2005). “Optimum friction pendulum system for near-fault motions.” Engineering Structures
17. 王健 (2006) “變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文。
18. 董佩宜 (2010) “應用多項式摩擦單擺支承之隔震橋梁研究”,國立中央大學土木系碩士論文。
19. 方嬿甄 (2011) “考量垂直效應之多項式摩擦單擺支承之分析與設計”,國立中央大學土木系碩士論文。
20. 曹哲瑋 (2016) “應用多項式摩擦單擺支承於不等高橋梁之研究”,國立中央大學土木系碩士論文。
21. Loh, C. S. (1999). “Interpretation of structural damage in 921 Chi-Chi-earthquake.” International Workshop on 921 Chi-Chi Earthquake Reconnaissance, Dec. 14-17, Taichung, Taiwan.
22. Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J. (1995). “Near-Source Ground Motion and its Effects on Flexible Buildings.” Earthquake Spectra, 11(4), 569-606.
23. Makris N. and Chang, S. P. (1998). “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.” Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley.
24. Liao, W. I., Loh, C. H. and Wan, S. (2000). “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep. 18-20, Taipei, 371-380.
25. 張婉妮 (2001) ,“近斷層震波對滑動隔震結構之影響”,高雄第一科技大學營建工程系碩士論文。
26. Zayas, V. A., Low, S. S., and Mahin, S. A. (1990). “A simple pendulum technique for achieving seismic isolation.” Earthquake Spectra, 6, 317-333.
27. Pranesh, M. and Sinha, R. (2000). “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627.
28. Pranesh, M. and Sinha, R. (2002). “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.” Journal of Structural Engineering, ASCE, 128(7), 870-882.
29. Pranesh, M. and Sinha, R. (2004). “Aseismic design of structure–equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139.
30. Pranesh, M., and Sinha, R. (2004). “Behavior of structures isolated using VFPI during bear source ground motions.” The 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105.
31. 盧煉元、李姿瑩、葉奕麟、張洵(2010),「變頻式搖擺支承於近域隔震之運用」,中國土木水利工程學刊,第二十二卷第三期,283-298。
32. Lu, L. Y., Shih, M. H. , and Wu, C. Y. (2004). “Near-fault seismic isolation using sliding bearings with variable curvatures.” The 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264.
33. Lu, L. Y., Shih, M. H., and Wu, C. Y. (2006). “Sliding isolation using variable frequency bearings for near fault ground motions.” The 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164.
34. Lu, L. Y., Wang, J., and Yeh, S. W. (2007). “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation.” The 4th International Structural Engineering and Construction Conference, Melbourne, Australia, 1065-1071.
35. Lu, L. Y., Lee, T. Y., and Yeh, S. W. (2011). “Theory and experimental study for sliding isolators with variable curvature.” Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.1106.
36. Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1942-1948.
37. Eberhart, R. C. and Kennedy, J. (1995). “A new optimizer using particle swarm theory.” Proceedings of the Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan, 39-43.
38. Kirkpatrick, S. ,Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by Simulated Annealing.” Science, 220, No. 4598, 671-680.
39. Corana, A., Maechesi, M.,Martini, C., and Ridella, S. (1987). “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM Transactions on Mathematical Software, 13(3), 262-280.
40. 莊玟珊 (2007) ,“PSO–SA 混合搜尋法與其他結構最佳化設計之應用”,國立中央大學土木工程學系碩士論文。
41. Lee, T.Y., Chung, K.J. and Chang, H. (2018), “A new procedure for nonlinear dynamic analysis of structures under seismic loading based on equivalent nodal secant stiffness,” International Journal of Structural Stability and Dynamics, 18(3), 1850043.
42. Lee, T.Y., Chung, K.J. and Chang, H. (2017) “A new implicit dynamic finite element analysis procedure with damping included.” Engineering Structures, 147, 530-544.
43. 鍾昆潤 (2018) ,“非耦合隱式動力有限元素分析及其於結構崩塌分析之應用”,國立中央大學土木系博士論文。
44. Klaus- Jürgen Bathe , Mirza M. Irfan Baig, (2005). “On a composite implicit time integration procedure for nonlinear dynamics “ Computers and Structures
45. Klaus- Jürgen Bathe, (2007). “Conserving energy and momentum in nonlinear dynamics:A simple implicit time integration scheme” Computers and Structures
46. Klaus-Jürgen Bathe,Gunwoo Noh, (2012).“Insight into an implicit time integration scheme for structural dynamics” Computers and Structures
47. Anoop Mokha, M. C. Constantinou,and A. M. Reinhorn,(1991) “Further results on frictional properties of teflon bearings” Journal of Structural Engineering, Vol. 117, No. 2, February,1991
48. 黃麟翔 (2019)“含變頻滑動支承及抗拉拔裝置之不等高橋梁實驗” ,國立中央大學土木系碩士論文。
49. 王亮偉 (2016)“變曲率滑動隔震系統於三維震波作用下之實驗與理論研究” ,國立成功大學土木系碩士論文。
50. C. Roussis and Michael C. Constantinou(2006) “Uplift-restraining Friction Pendulum seismic isolation system.” Earthquake engineering and structural dynamics
51. C. Roussis and Michael C. Constantinou(2006) “Experimental and analytical studies of structures seismicallyisolated with an uplift-restraining friction pendulum system.” Earthquake engineering and structural dynamics
52. C. Roussis (2009) “Study on the Effect of Uplift-Restraint on the Seismic Response of Base-Isolated” Journal of structural engineering
指導教授 李姿瑩(Tzu-Ying Li) 審核日期 2022-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明