博碩士論文 108322036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.139.85.161
姓名 鄭鈺翰(Yu-Han Cheng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 探討順向坡滑動機率與塊體運移特性受地質模型不確定性影響-以2010年國道三號3.1k崩塌事件為例
相關論文
★ 探討逆向坡受重力變形 及降雨影響之破壞型態★ 以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形
★ 極端降雨下堤防破壞機制探討 -以舊寮堤防為例★ 土壤工程性質水平方向空間變異性探討-以標準貫入試驗N值為例
★ 使用離散元素法進行乾砂直剪試驗模擬★ 以微觀角度探討顆粒狀材料在直剪試驗下之力學行為
★ 以地理統計方法進行大範圍基地地盤改良評估★ 以離散元素法進行具鍵結顆粒材料之直剪試驗模擬
★ 地工織物加勁土壤之承載力影響因子探討 -以中大紅土為例★ 以離散元素法探討加勁砂土層在淺基礎受載重下之力學
★ 卵礫石層直接剪力試驗與垂直平鈑載重試驗之離散元素法數值模擬★ 不同粗糙度係數下岩石節理面剖面之空間變異性探討
★ 以分離元素法與離心模型模擬在不同尺度下順向坡滑動行為★ 極端降雨下堤防邊坡穩定可靠度探討-以荖濃溪沿岸堤防為例
★ The micromechanical behavior of granular samples in direct shear tests using 3D DEM★ 以分離元素法與離心模型試驗探討順向坡滑動行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) Burland (1987)提出大地工程分析包含三種模型:地質模型、地面模型與大地工程模型。地質模型表現出現場 工址的地質條件,包含地質史、地質材料、地下水與層面位態等等;地盤 模型是將地質模型加上地工參數;大地工程模型是根據地面模型,針對個別要求做出預測模型。 由此可知,要做好大地工程分析,就必須考慮到地質模型不確定性。本研究分別從邊坡穩定性及崩滑塊體之運移距離來探討2010年國道三號3.1k崩塌案例受地質模型不確定性之影響。 葉致翔等人 (2021)透過有三種不同取得國道三號滑動面傾角參數的方法:(1)經濟部中央地質調查所區域地質圖;(2)現地以 地質羅盤量測;(3)LiDAR輔助判釋資料,藉由蒙地卡羅法來分析,並用極限平衡法計算出各個安全係數最後得出破壞機率。本研究以此做延伸,將滑動面以坡頂、滑動面中心與坡趾做支點來改變傾角,並考慮滑動塊體 體積 因傾角改變而改變的情形下,計算坡體滑動破壞機率。結果顯示以坡頂改變傾角較為合理,其破壞機率分別是地質調查所區域地質圖 為地質羅盤為LiDAR則趨於0%,說明不同調查方法有不同的精度,LiDAR所得到的傾角標準差與地調所地圖及地質羅盤相比較小,因此破壞機率也相對較小。葉致翔
等人(2021)的破壞機率分析結果分別是地質調查所區域地質圖為20.6%;地質羅盤為2%;LiDAR則趨於0%,說明考慮傾角變化對塊體重量的影響會增加破壞機率但幅度不多,主要還是傾角不確定性影響較大。
本研究亦探討節理分布的不確定性對於塊體崩移特性的影響,透過現場調查報告建立出與現場崩塌情形較為相似的一組數值模型,其走向節理個數為 8個,傾向節理個數為5個。透過改變走向與傾向節理的個數,建立出相對應的數值模型,觀察各個模型的坡頂位移、運移距離、崩落區寬度和崩落區面積,使用點估計法計算出各項的機率密度分布,進而計算各項的風險評估。結果顯示傾向節理變異性對於坡頂位移之影響較走向節理大;此案例的運移距離不受節理分布不確定性影響,有極高機率會直接淹沒南北雙向車道;崩落區寬度受節理分布不確定性影響可能不大;走向節理的變異性對
雙向車道;崩落區寬度受節理分布不確定性影響可能不大;走向節理的變異性對崩落區崩落區面積之影響較大。面積之影響較大。
摘要(英) Burland (1987) proposed that geotechnical analysis includes the assumptions of three models: Geologic Model, Ground Model and Geotechnical Model. The geologic model expresses the geological conditions of the site, including geological history, geological materials, groundwater and formation conditions, etc. The ground model represents the physical and mechanical properties of the geo-materials. The geotechnical model consists of theoretical or simplified assumptions of a predictive model for the analyzed case. In order to achieve a more representative geotechnical analysis result, the uncertainty of the three models must be considered. In the current study, we have focused on the importance of the geological model in a typical geotechnical analysis.
In this study, the impact of the geological model uncertainty on the National Highway No. 3 (NH-3) landslide event was discussed from the perspective of slope stability and debris run-out parameters. Yeh et al. (2021) obtained the sliding planes dip angles of NH-3 from three sources, which are: (1) the regional geological map of the Central Geological Survey, MOEA; (2) site investigation on the sliding plane after the sliding event; (3) the LiDAR data. Yeh et al. (2021) used the Monte Carlo simulation and the limit equilibrium method to calculate safety factors, and finally obtained the probability of failure of slope sliding, however, without considering the volume change of the sliding block due to the change of the dip angle. In this study, we have incorporated the change of debris volume with dip angle in the Monte Carlo Simulation. The results show that with the change of the dip angle (rotation at slope crest), the failure probability is 26.5% (as compared to Yeh et al. (2021) at 20.6%) with regional geological map information; 4.1% (as compared to Yeh et al. (2021) at 2%) with site investigation information after the sliding event; close to 0% with LiDAR-derived data (similar to Yeh et al. (2021)). The above results indicate that different surveying methods may result in different data accuracy. LiDAR-derived dip angle yielded the smallest standard deviation among the three investigation methods, therefore the probability of failure is relatively small.
To explore the uncertainty of joint distribution on the debris run-out parameters, this study established a set of numerical models that are similar to the landslide case through on-site investigation reports. A number of corresponding numerical models were established by changing the number of the joints along the strike and dip directions of the slope. The debris run-out parameters, including the slope crest displacement, toe run-out distance, debris accumulation width and area of each model are analyzed using point estimate method. Probability Density Function of each parameter is analyzed and the risk assessment (probability of exceedance) of each debris run-out parameter was then calculated. The results show that the uncertainty of dip joints has a greater impact on the slope crest displacement than that of the strike joints; the run-out distance of this case is not affected by the uncertainty of the joints, and there is a very high probability that the highway is directly covered by the landslide debris; the width of the accumulated debris is not affected much by the distribution of joints. Finally, the variability of strike joints has a large effect on the coverage area of the accumulated debris.
關鍵字(中) ★ 離散元素模型
★ 傾角不確定性
★ 節理分布不確定性
★ 極限平衡分析
★ 塊體運移特性
關鍵字(英) ★ Discrete element model
★ Uncertainty of dip angle
★ Uncertainty of joint spacing
★ Limit Equilibrium Analysis
★ Debris run-out parameters
論文目次 摘要.......................................................i
Abstract.................................................iii
誌謝.......................................................v
目錄......................................................vi
圖目錄....................................................ix
表目錄..................................................xiii
第一章 緒論................................................1
1.1 研究動機..............................................1
1.2 研究目的..............................................2
1.3 論文架構..............................................2
第二章 文獻回顧.............................................3
2.1 岩坡分類及穩定性分析....................................3
2.1.1 岩坡分類.............................................3
2.1.2 平面破壞的條件........................................4
2.1.3 平面破壞分析..........................................5
2.2國道三號3.1k破壞背景說明.................................8
2.2.1 交通部調查報告........................................8
2.2.2 節理判釋............................................11
2.3 模型不確定性之分類.....................................12
2.3.1大地工程分析模型種類..................................12
2.3.2大地工程可靠度分析....................................14
2.3.2.1 應用於邊坡穩定性分析的可靠性........................14
2.3.2.2 處理地質模型不確定性之傳統及新方法...................15
2.3.2.3 邊坡破壞機率反算分析–以國道三號為例..................17
2.3.2.4 大地工程設計中的地質模型不確定性–以國道三號為例.......18
2.4 可靠度分析方法.........................................20
2.4.1 蒙地卡羅法(Monte Carlo simulation)..................20
2.4.2 點估計法(Point Estimate Method).....................21
2.5 數值方法..............................................23
2.5.1 3DEC軟體基本介紹.....................................23
2.5.2 3DEC運算原理........................................24
2.5.3 3DEC接觸檢核........................................25
2.5.4 3DEC塊體組成律......................................26
2.5.5 3DEC不連續面組成律...................................26
2.5.6 3DEC建置模型........................................27
第三章 研究方法............................................28
3.1 二維邊坡穩定分析.......................................30
3.1.1 滑動塊體重量計算.....................................30
3.1.2 傾角變異性來源.......................................32
3.1.3 極限平衡公式及參數...................................34
3.1.4 蒙地卡羅分析........................................35
3.2 三維崩滑塊體運移分析...................................36
3.2.1 數值地形建模........................................36
3.2.2 節理變異性來源.......................................38
3.2.3 三維建模及分析參數...................................40
3.2.4 點估計法分析.........................................45
第四章 研究結果............................................49
4.1傾角不確定性對邊坡滑動機率之影響.........................49
4.1.1 傾角與滑動塊體重量之關係–依不同傾角旋轉基準點討論.......49
4.1.2 滑動面傾角來源及其變異性–分不同切傾角方式討論...........51
4.1.3 滑動機率討論–分不同切傾角方式討論.....................56
4.2 節理分布不確定性對塊體運移特性之影響.....................60
4.2.1 3DEC模擬結果........................................60
4.2.2 點估計法結果討論.....................................69
4.2.2.1坡頂位移...........................................69
4.2.2.2塊體運移距離........................................73
4.2.2.3崩落區寬度.........................................77
4.2.2.4崩落區面積.........................................81
4.3 綜合討論..............................................84
4.3.1坡頂位移.............................................85
4.3.2塊體運移距離..........................................87
4.3.3崩落區寬度...........................................88
4.3.4崩落區面積...........................................89
第五章 結論...............................................91
5.1 結論..................................................91
參考文獻..................................................94
附錄......................................................96
參考文獻 1.Bárdossy, G., & Fodor, J. (2001). Traditional and new ways to handle uncertainty in geology. Natural Resources Research, 10(3), 179-187.
2.Christian, J. T., Ladd, C. C., & Baecher, G. B. (1994). Reliability applied to slope stability analysis. Journal of Geotechnical Engineering, 120(12), 2180-2207.
3.Fenton, G. A., & Griffiths, D. V. (2008). Risk assessment in geotechnical engineering (Vol. 461). New York: John Wiley & Sons.
4.Itasca Consulting Group, Inc. (2003). 3 Dimensional Distinct Element Code User’s Guide. Minneapolis, MN: Itasca Consulting Group Inc.
5.Juang, C. H., Zhang, J., Shen, M., & Hu, J. (2019). Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis. Engineering geology, 249, 148-161.
6.Raychaudhuri, S. (2008, December). Introduction to monte carlo simulation. In 2008 Winter simulation conference (pp. 91-100). IEEE.
7.Wang, L., Hwang, J. H., Luo, Z., Juang, C. H., & Xiao, J. (2013). Probabilistic back analysis of slope failure–a case study in Taiwan. Computers and Geotechnics, 51, 12-23.
8.Wyllie, D. C., & Mah, C. (2004). Rock slope engineering. CRC Press.
9.Yeh, C. H., Dong, J. J., Khoshnevisan, S., Juang, C. H., Huang, W. C., & Lu, Y. C. (2021). The role of the geological uncertainty in a geotechnical design–A retrospective view of Freeway No. 3 Landslide in Northern Taiwan. Engineering Geology, 291, 106233.
10.行政院農業委員會水土保持局 (2020年3月9日)。水土保持技術規範。水土保持技術規範-行政院農業委員會水土保持局全球資訊網。https://www.swcb.gov.tw/Home/laws/laws_more?id=72279a8c50f3445e8d564a8d4577342e
11.社團法人中華民國大地工程學會 (2011年2月)。國道3號3.1公里崩塌事件原因調查工作總結報告。交通部。
12.曾鴻儒、盧賢秀、俞肇福、歐祥義、林嘉琪(2010年4月26日)。順向坡滑動肇禍 國道邊坡總體檢。自由時報。https://news.ltn.com.tw/news/focus/paper/390808
13.羅佳明、鄭添耀、林彥享、蕭震洋、魏倫瑋、黃春銘、冀樹勇、林錫宏和林銘郎 (2011)。國道3號七堵順向坡滑動過程之動態模擬。中華水土保持學報,42(3),175-183。
指導教授 黃文昭(Wen-Chao Huang) 審核日期 2022-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明