博碩士論文 108322045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.139.238.76
姓名 唐鴻廷(Hong-Ting Tang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討
(Examination of influence factors for hysteresis between soil water content and electrical conductivity measured by TDR)
相關論文
★ TDR監測資訊平台之改善與 感測器觀測服務之建立★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬
★ 堰塞壩破壞歷程分析及時域反射法應用監測★ 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善
★ 應用時域反射法於地層下陷監測之改善研發★ 深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對
★ 淺層崩塌物聯網系統與深層型時域反射邊坡監測技術之整合★ Modification of TDR Penetrometer for Water Content Profile Monitoring
★ 利用線上遊戲於國小一年級至三年級學童防災教育推廣效益之研究—以桃園防災教育館為例★ 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬
★ Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling★ 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例
★ 穿戴式偵測墜落及跌倒裝備於本國建築工地之研發測試★ 機器學習在水庫入流與濁度預測之應用-以石岡壩為例
★ 深度學習與資料擴增於山崩監測預測之可行性評估★ 利用光學與熱影像融合進行邊坡之長期穩定性監測評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 台灣位於環太平洋地震帶上,主要由菲律賓海板塊和歐亞板塊的碰撞而產生的島嶼,其屬於較年輕的地質,所以地質處於較不穩定且較破碎之狀態。而臺灣屬於亞熱帶季風氣候,主要的降雨來自梅雨與颱風。然而,每當豪雨發生時,山區時常發生土石鬆動與崩滑之現象,大量的土石崩落已影響到民眾的生命財產與安全。由於研究指出影響淺層滑坡產生的滑動的關鍵因素在於降雨入滲,而監測大範圍土壤體積含水量剖面於大面積邊坡穩定分析是相當有用的。
本研究使用時域反射法(Time Domain Reflectometry, TDR)之設備與地電阻影像剖面法(Electrical Resistivity Tomography, ERT)。藉由電阻率(與導電度為倒數關係)與體積含水量的關係,來繪製出大範圍體積含水量剖面圖。並且搭配吸力計來量測基質吸力,藉由土壤水分特徵曲線(Soil Moisture Characteristic Curve, SWCC)來繪製出大範圍吸力剖面圖。
由於前期研究指出含水量與導電度存在非唯一關係,且乾溼速率是影響遲滯效應的關鍵因素,所以本研究擬定找出其他產生遲滯效應的因素,以評估能順利繪製體積含水量剖面圖。本研究藉由砂箱實驗來找出何種因素對於遲滯效應影響最大,如緊實與鬆散的紅土、酸雨與中性的雨水,與不同的水質導電度。且由上述的每個因素再搭配急降雨,來比對何種因素會加劇遲滯效應影響,又或者影響程度相當。成果顯示較高的水質導電度並無法產生遲滯效應,較高的密度與酸雨能看到類似遲滯迴圈的現象。最後藉由實驗中擷取到的反射訊號進行頻譜分析,作為初步可行性評估。以及在感測範圍內,試體含水量較於平均時,PVA(Phase velocity analysis)頻譜與TDR全波形反算分析法(Full waveform inversion analysis)頻譜具有非常不錯的相似程度,以及PVA在分析速度與程式輕量化上明顯優於TDR全波形反算分析法(Full waveform inversion analysis)。
摘要(英) Taiwan is featured with the frequent earthquakes by Philippine Sea Plate and Eurasian Plate which collide together. Also, Taiwan is subtropical monsoon climate, and the rainfall is primary for the rainy season and typhoon. However, whenever torrential rains occur, the mountainous areas often loosen and collapsed. The landslides have affected people′s lives, property and safety. Since the study pointed out that the key factor affecting the sliding caused by shallow landslides is rainfall infiltration, the monitoring of a large-scale soil volumetric water content profile is quite useful for the slope stability analysis.
In the study, we use Time Domain Reflectometry (TDR) and Electrical Resistivity Tomography (ERT) to draw a large-scale soil volumetric water content profile by the relationship between the volumetric water content and electrical conductivity (EC), which is reciprocal for electrical resistivity. And also use a tensiometer to draw a large-scale soil matric suction profile by the relationship for Soil-Water characteristic curve. The relationship between the volumetric water content and electrical conductivity has a non-unique relationship (Hysteresis). The previous research points out that the drying-wetting rate is the key factor affecting the hysteresis effect, so finding out other factors that produce the hysteresis effect is an important key to draw the volumetric water content profile.
In the study, we wanted to find out which factors have the influence on the hysteresis through the sandbox test, such as dense and loose sand, acid factors with the torrential rainfall. The results show that higher water EC does not produce hysteresis, and density and acid rainfall water can see a phenomenon of hysteresis. Finally, TDR spectrum analysis is carried out in the experiment as a preliminary feasibility assessment. When the water content of the specimen is uniformly distributed, the PVA (Phase velocity analysis) spectrum and the TDR full waveform inversion analysis spectrum have a very good degree of similarity. Furthermore, PVA has advantages of program lightweight and higher speed for analysis.
關鍵字(中) ★ 時域反射法
★ 地電阻影像剖面法
★ 體積含水量
★ 導電度
★ 頻譜分析
關鍵字(英) ★ Time Domain Reflectometry (TDR)
★ Electrical Resistivity Tomography (ERT)
★ soil volumetric water content
★ soil electrical conductivity
★ spectrum analysis
論文目次 目錄
第1章 前言 1
1.1 研究動機 1
1.2 研究目的 1
1.3 研究架構 3
第2章 文獻回顧 5
2.1 材料介電行為 5
2.2 TDR基本原理 9
2.2.1 TDR基本原理 9
2.2.2 TDR感測導波器之分類 14
2.2.3 TDR體積含水量量測 20
2.2.4 TDR導電度量測 24
2.2.5 TDR量測地下含水量分布之相關研究 28
2.2.6 TDR 波形模擬與介電頻譜反算 44
2.3 ERT基本原理 47
2.4 土壤含水量-導電度關係探討 50
第3章 研究方法 63
3.1 貫入器量測係數率定 63
3.1.1 切線法(tangent line method) 63
3.1.2 量測材料介電常數與視介電常數轉換公式 69
3.1.3 量測材料導電度與穩態值轉換公式 75
3.1.4 率定流程 75
3.2 TDR反射係數頻譜分析 82
3.2.1 TDR全波形反算分析 82
3.2.2 Phase velocity analysis (PVA) 83
3.3 砂箱實驗 86
3.3.1 砂箱實驗配置 86
3.3.2 砂箱實驗流程 95
3.3.3 資料處理 100
第4章 實驗結果與討論 102
4.1 感測器率定結果 102
(1). 乾密度組(鬆,1.3 g/cm3): 105
(2). 自然高導電度組(240 μS/cm): 114
(3). 高密度組(1.7 g/cm3): 123
(4). 自然高酸組(pH = 5): 131
4.2 實際物理參數 131
(1). 乾密度組(鬆,1.3 g/cm3): 131
(2). 自然高導電度組(240μS/cm): 131
(3). 高密度組(1.7 g/cm3): 132
(4). 自然高酸組(pH = 5): 132
4.3 體積含水量與導電度 132
(1). 乾密度組(鬆,1.3 g/cm3): 132
(2). 自然高導電度組(240μS/cm): 141
(3). 高密度組(1.7 g/cm3): 149
(4). 自然高酸組(pH = 5): 166
4.4 體積含水量與基質吸力 177
(1). 乾密度組(鬆,1.3 g/cm3): 177
(2). 自然高導電度組(240μS/cm): 178
(3). 高密度組(1.7 g/cm3): 179
(4). 自然高酸組(pH = 5): 180
4.5 介電頻譜分析成果 181
(1). 乾密度組(鬆,1.3 g/cm3): 181
(2). 自然高導電度組(240μS/cm): 193
(3). 高密度組(1.7 g/cm3): 206
(4). 自然高酸組(pH = 5): 218
(5). 乾密度組-160μS/cm v.s.自然高導電度組-240μS/cm |同含水量頻譜對比: 229
(6). 乾密度組-1.3 g/cm3 v.s.高密度組-1.7 g/cm3|同含水量頻譜對比: 232
(7). 乾密度組-pH = 7 v.s.自然高酸組-pH = 5|同含水量頻譜對比: 235
4.6 ERT反算結果 239
(1). 乾密度組(鬆,1.3 g/cm3): 239
(2). 自然高導電度組(240μS/cm): 243
(3). 高密度組(1.7 g/cm3): 247
(4). 自然高酸組(pH = 5): 251
4.7 ERT反算結果轉換成體積含水量 255
(1). 乾密度組(鬆,1.3 g/cm3): 255
(2). 自然高導電度組(240μS/cm): 260
(3). 高密度組(1.7 g/cm3): 265
(4). 自然高酸組(pH = 5): 270
第5章 結論與建議 275
5.1 結論 275
5.2 建議 276
第6章 參考文獻 278
附錄 288
評審意見回覆表 288
符號說明 296
參考文獻 第6章 參考文獻
1. Andryieuski, A., Kuznetsova, S., Zhukovsky, S., Kivshar, Y. and Lavrinenko, A. (2015). “Water: Promising Opportunities for Tunable All-dielectric Electromagnetic Metamaterials,” Scientific reports, Vol. 5, No. 1. doi:10.1038/srep13535
2. Archie, G. E. (1942). “The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics,” Transactions of the AIME, Vol. 146, No. 1, pp. 54-62. doi:10.2118/942054-G
3. Baker, J. M. and Allmaras, R. R. (1990). “System for Automating and Multiplexing Soil Moisture Measurement by Time-Domain Reflectometry,” Soil Science Society of America Journal, Vol. 54, pp. 1-6. doi:10.2136/sssaj1990.03615995005400010001x
4. Chapuis, R. P. and Aubertin, M. (2003). “On the Use of the Kozeny–Carman Equation to Predict the Hydraulic Conductivity of Soils,” Canadian Geotechnical Journal, Vol. 40, No. 3, pp. 616-628. doi:10.1139/T03-013
5. Chaudhari, A., More, N. M. and Mehrotra, S. (2001). “Static Dielectric Constant and Relaxation Time for the Binary Mixture of Water, Ethanol, N. N-Dimethylformamide, Dimethylsulphoxide, and N, M-Dimethylacetamide with 20Hethoxyethanol,” Bulletin of the Korean Chemical Society, Vol. 22, No. 4, pp. 357-361.
6. Chu, D. Y, Zhang, Q. and Liu, R. L. (1987). “Standard Gibbs free energies of transfer of NaCl and KCl from water to mixtures of the four isomers of butyl alcohol with water. The use of ion-selective electrodes to study the thermodynamics of solutions,” Journal of the Chemical Society, Vol. 83, pp. 635-644. doi:10.1039/f19878300635
7. Chung, C. C. and Lin, C. P. (2011). “High concentration suspended sediment measurements using time domain reflectometry,” Journal of Hydrology, Vol. 401, No. 1-2, pp. 134-144. doi:10.1016/j.jhydrol.2011.02.016
8. Chung, C. C., Lin, C. P., Yang, S. H., Lin, J. Y. and Lin, C. H. (2019). “Investigation of non-unique relationship between soil electrical conductivity and water content due to drying-wetting rate using TDR,” Engineering Geology, Vol. 252, pp. 54-64. doi:10.1016/j.enggeo.2019.02.025
9. Dahan, O., Mcdonald, E. and Young, M. (2003). “Flexible Time Domain Reflectometry Probe for Deep Vadose Zone Monitoring,” Vadose Zone Journal, Vol. 2, No. 2, pp. 270-275.
10. Dannhauser, W. and Bahe, L. W. (1964). “Dielectric Constant of Hydrogen Bonded Liquids. III. Superheated Alcohols,” The Journal of Chemical Physics, Vol. 40, No. 10, pp. 3058–3066. doi:10.1063/1.1724948
11. Dannhauser, W. and Cole, R. H. (1955). “Dielectric Properties of Liquid Butyl Alcohols. The Journal of Chemical Physics,” Vol. 23, No. 10, pp. 1762–1766. doi:10.1063/1.1740576
12. Dobson, M. C., Ulaby, F. T., Hallikainen, M. T. and El-rayes, M. A. (1985). “Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models,” in IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-23, No. 1, pp. 35-46. doi:10.1109/TGRS.1985.289498
13. Dowding, C. H. and Pierce, C. E. (1994). “Measurement of localized failure planes in soil with time domain reflectometry,” In Proceedings of the Symposium on Time Domain Reflectometry in Environmental, pp. 7-9.
14. Dowding, C. H., Su, M. B., and O′Connor, K. (1988). “Principles of time domain reflectometry applied to measurement of rock mass deformation,” International Journal of Rock Mechanic., Mining Science., & Geomechanics Abstracts, Vol. 25, No. 5, pp. 287-297. doi:10.1016/0148-9062(88)90005-8
15. Fredlund, D. G. and Rahardjo, H. (1993). “Soil Mechanics for Unsatured Soils.” doi:10.1002/9780470172759
16. Giese, K. and Tiemann, R. (1975). “Determination of the complex permittivity from thin-sample time domain reflectometry improved analysis of the step response waveform,” Advances in Molecular Relaxation Processes, Vol. 7, No. 1, pp. 45-59. doi:10.1016/0001-8716(75)80013-7
17. Goss F. R. (1940). “Part III. Polarisation and Association of Alcohols in the Liquid Phase,” J.Chem.Soc.London, pp. 888-894.
18. Greco, R. (2006). “Soil water content inverse profiling from single TDR waveforms,” Journal of Hydrology, Vol. 317, No. 3-4, pp. 325-339. doi:10.1016/j.jhydrol.2005.05.024
19. Greco, R. and Guida, A. (2008). “Field measurements of topsoil moisture profiles by vertical TDR probes,” Journal of Hydrology, Vol. 348, No. 3-4, pp. 442-451. doi:10.1016/j.jhydrol.2007.10.013
20. Greco, R., Guida, A., Damiano, E. and Olivares, L. (2010). “Soil water content and suction monitoring in model slopes for shallow flowslides early warning applications,” Physics and Chemistry of the Earth, Vol. 35 No. 3-5, pp. 127-136. doi:10.1016/j.pce.2009.12.003
21. Heimovaara, T. J., Huisman, J. A., Vrugt, J. and Bouten, W. (2004). “Obtaining the Spatial Distribution of Water Content along a TDR Probe Using the SCEM-UA Bayesian Inverse Modeling Scheme,” Vadose Zone Journal, Vol. 3, No. 4, pp. 1128-1145. doi:10.2136/vzj2004.1128
22. Heimovaara, T.J. (1994). “Frequency domain analysis of time domain reflectometry waveforms. 1. Measurement of the complex dielectric permittivity of soils,” Water resources research, Vol. 30, No. 2, pp. 189-199. doi:10.1029/93WR02948
23. Heyding, R. D. and Winkler, C. A. (1951). “SOLVENT EFFECT ON IODIDE EXCHANGE. Canadian Journal of Chemistry,” Vol. 29, No. 9, pp. 790–803. doi:10.1139/v51-091
24. Hook, W. R., Livingston, N. J., Sun, Z. J. and Hook, P. B. (1992). “Remote Diode Shorting Improves Measurement of Soil Water by Time Domain Reflectometry,” Soil Science Society of America Journal, Vol. 56, No. 5, pp. 1384-1391. doi:10.2136/sssaj1992.03615995005600050009
25. Huyskens P. and Cracco F. (1960). “Dipole Moments of Butyl-Alcohols in Solution,” Bull.Soc.Chim.Belg. Vol. 69, pp. 422-440.
26. Khimenko M. T., Aleksandrov V. V. and Gritsenko N. N. (1973). “Polarizability and radii of molecules of some pure liquids,” Zh. Fiz. Khim, Vol. 47, pp. 2914-2915.x
27. Knight R., (1991). “Hysteresis in the electrical resistivity of partially saturated sandstones,” Geophysics, Vol. 56, No. 12, pp. 2139–2147. doi:10.1190/1.1443028
28. Klein L. A. and Swift, C. T. (1977). “An improved model for the dielectric constant of sea water at microwave frequencies,” in IEEE Transactions on Antennas and Propagation, Vol. 25, No. 1, pp. 104-111. doi:10.1109/TAP.1977.1141539
29. Klein, K. A. and Santamarina, J. C. (2003). “Electrical Conductivity in Soils: Underlying Phenomena,” Journal of Environmental and Engineering Geophysics, Vol. 8, No. 4, pp. 263-273. doi:10.4133/JEEG8.4.263
30. Kohgo Y., Nakano M., and Miyazaki T. (1993). “Theoretical aspects of constitutive modeling for unsaturated soils,” Soils and Foundations, Vol. 33, No. 4, pp. 49-63. doi:10.3208/SANDF1972.33.4_49
31. Laloy, E., Huisman, J. A. and Jacques, D. (2014). “High-resolution moisture profiles from full-waveform probabilistic inversion of TDR signals,” Journal of Hydrology, Vol. 519, pp. 2121–2135. doi:10.1016/j.jhydrol.2014.10.005
32. Lin, C. P. (2003). “Frequency Domain Versus Travel Time Analyses of TDR Waveforms for Soil Moisture Measurements,” Soil Science Society of America Journal, Vol. 67, No. 3, pp. 720-729. doi:10.2136/sssaj2003.7200
33. Lin, C. P., Chung, C. C. and Tang S. H. (2007). “Accurate Time Domain Reflectometry Measurement of Electrical Conductivity Accounting for Cable Resistance and Recording Time,” Soil Science Society of America Journal, Vol. 71, No. 4., pp. 1278-1287. doi:10.2136/sssaj2006.0383
34. Lin, C. P., Chung, C. C., Huisman, J. A. and Tang, S. H. (2008). “Clarification and Calibration of Reflection Coefficient for Electrical Conductivity Measurement by Time Domain Reflectometry,” Soil Physics, Vol. 72, No. 4, pp. 1033-1040. doi:10.2136/sssaj2007.0185
35. Lin, C. P., Ngui, Y. J. and Lin, C. H. (2016). “A novel TDR signal processing technique for measuring apparent dielectric spectrum,” Measurement Science and Technology, Vol.28, No. 1. doi:10.1088/1361-6501/28/1/015501
36. Lin, C. P., Tang S. H., Lin W. C. and Chung, C. C. (2009). “Quantification of Cable Deformation with Time Domain Reflectometry—Implications to Landslide Monitoring,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 1, pp. 143-152. doi:10.1061/(ASCE)1090-0241(2009)135:1(143)
37. Lin, C. P., Tang, S. H. and Chung, C. C. (2006). “Development of TDR Penetrometer through Theoretical and Laboratory Investigations: 1. Measurement of Soil Dielectric Permittivity,” Geotechnical Testing Journal, Vol. 29, No. 4, pp. 306-313. doi:10.1520/GTJ14093
38. Lin, C. P., Wang, K., Chung, C. C., and Weng, Y. W. (2017). “New types of time domain reflectometry sensing waveguides for bridge scour monitoring,” Smart Materials and Structures, Vol. 26, No. 7, pp. 1-11. doi:10.1088/1361-665X/aa71f9
39. Malmberg, C. G. and Maryott, A. A. (1956). “Dielectric Constant of Water from 0 0 to 100 0 C,” Journal of research of the National Bureau of Standards, Vol.56., No.1, pp. 2641-2648. doi:10.6028/JRES.056.001
40. Mboh, C. M., Huisman, J. A. and Vereecken, H. (2011). “Feasibility of Sequential and Coupled Inversion of Time Domain Reflectometry Data to Infer Soil Hydraulic Parameters under Falling Head Infiltration,” Soil Science Society of America Journal, Vol. 75, No. 3, pp. 775-786. doi:10.2136/sssaj2010.0285
41. Menziani, M., Pugnaghi, S. and Vincenzi, S. (2007). “Analytical solutions of the linearized Richards equation for discrete arbitrary initial and boundary conditions. Journal of Hydrology,” Vol. 332, No. 1-2, pp. 214-225. doi:10.1016/j.jhydrol.2006.06.030
42. Menziani, M., Pugnaghi, S., Vincenzi, S. and Santangelo, R. (2003). “Soil moisture monitoring in the Toce valley (Italy),” Hydrology and Earth System Sciences, Vol. 7, No. 6, pp. 890-902. doi:10.5194/hess-7-890-2003
43. Mojid, M. A., Rose, D. A. and Wyseure, G. C. L. (2007). “A model incorporating the diffuse double layer to predict the electrical conductivity of bulk soil,” European Journal of Soil Science, Vol. 58, No. 3, pp. 560-572. doi:10.1111/j.1365-2389.2006.00831.
44. Nichol, C., Beckie, R. and Smith, L. (2002). “Evaluation of Uncoated and Coated Time Domain Reflectometry Probes for High Electrical Conductivity Systems,” Soil Science Society of America Journal, Vol. 66, No. 5, pp. 1454-1465. doi:10.2136/sssaj2002.1454
45. Pepin, S., Livingston, N. J. and Hook, W. R. (1995). “Temperature-Dependent Measurement Errors in Time Domain Reflectometry Determinations of Soil Water,” Soil Science Society of America Journal, Vol. 59, No. 1, pp. 38-43. doi:10.2136/sssaj1995.03615995005900010006
46. Rhoades, J. D., Raats, P. A. C. and Prather, R. J. (1976). “Effects of Liquid-phase Electrical Conductivity, Water Content, and Surface Conductivity on Bulk Soil Electrical Conductivity1,” Soil Science Society of America Journal, Vol. 40, No. 5, pp. 651-655. doi:10.2136/sssaj1976.03615995004000050017
47. Sauer, M. C., Southwick, P. F., Spiegler, K. S. and Wyllie, M. R. J. (1955). “Electrical Conductance of Porous Plugs - Ion Exchange Resin-Solution Systems. Industrial & Engineering Chemistry,” Vol. 47, No. 10, pp. 2187-2193. doi:10.1021/ie50550a044
48. Schiffler, G. R. and Bárdossy, A. (1991). “Geostatistical assessment of space-time distributed data: application to soil moisture measurements in an experimental catchment,” Hydrological Basis of Ecologically Sc.md Management of Soil and Groundwater, no. 202, pp. 279-287.
49. Serrarens, D., MacIntyre, J. L., Hopmans, J. W. and Bassoi, L. H. (2000). “Soil moisture calibration of TDR multilevel probes,” Scientia Agricola, Vol. 57, No. 2, pp. 349-354. doi:10.1590/S0103-90162000000200024
50. Shah, P., Singh, D.N. and Dean, S. (2005). “Generalized Archie′s Law for Estimation of Soil Electrical Conductivity,” Journal of Astm International, Vol. 2, No. 5. doi:10.1520/JAI13087
51. Shirke, R. M., Chaudhari, A., More, N. M. and Patil, P. B. (2000). “Dielectric Measurements on Methyl Acetate + Alcohol Mixtures at (288, 298, 308, and 318) K Using the Time Domain Technique,” Journal of Chemical and Engineering Data, Vol. 45, No. 5, pp. 917-919. doi:10.1021/je000066+
52. Shirke, R. M., Chaudhari, A., More, N. M. and Patil, P. B. (2001). “Temperature dependent dielectric relaxation study of ethyl acetate — Alcohol mixtures using time domain technique,” Journal of Molecular Liquids, Vol. 94, No. 1, pp. 27-36. doi:10.1016/s0167-7322(01)00239-2
53. Timlin, D. and Pachepsky, Y. (2002). “INFILTRATION MEASUREMENT USING A VERTICAL TIME-DOMAIN REFLECTOMETRY PROBE AND A REFLECTION SIMULATION MODEL,” Soil Science, Vol. 167, No. 1, pp. 1-8.
54. Topp, G. C., Davis, J. L., and Annan, A. P. (1980). “Electromagnetic determination of soil water content: Measurements in coaxial transmission lines,” Water Resour. Res., Vol. 16, No. 3, pp. 574– 582. doi:10.1029/WR016i003p00574
55. Van Genuchten, M. T. (1980). “A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1,” Soil Science Society of America Journal, Vol. 44, No. 5, pp. 892-898. doi:10.2136/sssaj1980.03615995004400050002
56. Van Genuchten, M. T. and Nielsen, D. R. (1985). “On describing and predicting the hydraulic properties of unsaturated soils,” Annales Geophysicae, Vol. 3, pp. 615-627. doi:10.1016/0168-1923(85)90033-4
57. Vanapalli, S., Fredlund, D., Pufahl, D. E. and Clifton, A. W. (1996). “Model for the prediction of shear strength with respect to soil suction,” Canadian Geotechnical Journal, Vol. 33, No. 3, pp. 379-392. doi:10.1139/t96-060
58. Varnes, David J. (1978). “Chapter 2 Slope Movement Types and Processes.”
59. Vaz, C. M. P. and Hopmans, J. W. (2001). “Simultaneous Measurement of Soil Penetration Resistance and Water Content with a Combined Penetrometer–TDR Moisture Probe,” Soil Science Society of America Journal, Vol. 65, No. 1, pp. 4-12. doi:10.2136/sssaj2001.6514
60. Wang, K., Lin, C. P. and Chung, C. C. (2019). “A bundled time domain reflectometry-based sensing cable for monitoring of bridge scour,” Structural Control and Health Monitoring, Vol. 26, No. 4, pp 1-14. doi:10.1002/stc.2345
61. Wraith, J. M. and Or, D. (1999). “Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model,” Water Resources Research, Vol. 35, No. 2, pp. 371-383. doi:10.1029/1998WR900006
62. Yankielun, N. E. and Leonard J. Z. (1999). “LABORATORY INVESTIGATION OF TIME-DOMAIN REFLECTOMETRY SYSTEM FOR MONITORING BRIDGE SCOUR,” Journal of Hydraulic Engineering, Vol. 125, pp. 1279-1284.
63. 尤仁弘 (2006),「應用地電阻影像法於壩體潛在滲漏調查之研究」,碩士論文,國立交通大學土木工程學系。
64. 吳瑋晉 (2008),「結合地電阻率與TDR於土層含水特性之監測」,碩士論文,國立交通大學土木工程學系。
65. 吳瑋晉 (2008),「結合地電阻率與TDR於土層含水特性之監測」,碩士論文,國立交通大學土木工程學系。
66. 周南山 (2005),「山區道路邊坡災害防治」,森林遊憩設施規劃設計與施工研習會暨94年度林務局育樂工程計畫內容說明報告。
67. 林哲毅 (2009),「土壤電阻率與含水特性關係之探討」,碩士論文,國立交通大學土木工程學系。
68. 林哲毅 (2009),「土壤電阻率與含水特性關係之探討」,碩士論文,國立交通大學土木工程學系。
69. 姚奕全 (2007),「應用地電阻於崩積層含水特性調查與監測之初探」,碩士論文,國立交通大學土木工程學系。
70. 陳岱源 (2005),「修正型水筒模式應用於基流分離之研究」,碩士論文,國立成功大學。
71. 陳嬑璇、譚志豪、陳勉銘、蘇泰維 (2013),「降雨誘發山區淺層滑坡之臨界雨量研析」,中華水土保持學報,第44卷第1期,頁87-96。
72. 楊士輝 (2011),「地層電學性質與含水特性關係之現地尺度探討」,碩士論文,國立交通大學土木工程學系。
73. 楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011),「臺灣常用山崩分類系統」,The 14th Conference on current researches in geotechnical engineering in Taiwan,頁25-26。
74. 鄭志峯 (2013),「多點分佈式TDR含水量感測器改良」,碩士論文,國立交通大學土木工程學系。
75. 賴煜勳、林志平、陳泰瑜 (2020),「TDR地滑監測系統與測傾管共構可行性探討」,第 18 屆大地工程學術研究討論會論文集。
76. 簡煒峰 (2017),「應用時域反射法於地層下陷監測之改善」,碩士論文,國立中央大學土木工程學系。
77. 魏士凱 (2019),「Modification of TDR Penetrometer for Water Content Profile Monitoring」,碩士論文,國立中央大學土木工程學系。
78. 鐘志忠 (2008),「時域反射量測技術改良及於水土混和物之應用」,博士論文,國立交通大學土木工程學系。
79. 鐘志忠、曾國欣、黃智遠 (2017),「淺層崩塌降雨警戒基準與檢監測技術評估研究-子計畫:降雨引發淺層崩塌之可犧牲式監測元件研發(I)」,科技部補助專題研究計畫成果報告。
80. 鐘志忠、林志平、廖翊均、魏士凱、簡濟豪 (2018) ,「淺層崩塌降雨警戒基準與檢監測技術評估研究-子計畫:降雨引發淺層崩塌之可犧牲式監測元件研發(II)」,科技部補助專題研究計畫成果報告。
81. 鐘志忠 (2021) ,「土壤介電行為與水文特性於淺層崩塌穩定應用探討」,行政院農業委員會水土保持局創新研究計畫成果報告,尚未公開。
指導教授 鐘志忠(Chih-Chung Chung) 審核日期 2023-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明