博碩士論文 108322052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:3.129.63.114
姓名 周薪凱(Hsin-Kai Chou)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 國際間採用多重障壁的設計理念並推崇以膨潤土作為放射性廢棄物最終處置的基質材料,達到阻絕放射性物質遠離生物圈的目的。本研究為探討混合型緩衝材料於低放射性廢棄物最終處置場之工程特性,透過進行實驗室測試,模擬現地可能發生之情況。當處置場中的緩衝材料受到水-力學 (H-C) 耦合效應的影響,由處置窖自重以及其他設施所產生的壓力,而造成處置窖位移,並利用ABAQUS有限元素法進行潛變行為之數值模擬分析。
本研究以美國懷俄明州MX-80膨潤土與日本K-V1膨潤土,並混合30 %苗栗地區石英砂為緩衝材料。首先透過修正式夯實試驗,取得不同膨潤土混合石英砂之緩衝材料的最大乾單位重與最佳含水量,依照修正式夯實試驗結果之最佳含水量調配試體的初始含水量,採用黏土有效密度控制,以靜態壓實法製備緩衝材料,進行回脹壓力、水力傳導係數與力學強度評估,最後針對飽和緩衝材料進行等應力直剪試驗,求取潛變參數。
本研究結果分為兩個部份,第一部分為實驗成果顯示:(1)以石英砂取代30 %的膨潤土後,其回脹壓力與阻水性能皆可滿足瑞典SKB高放相關安全功能需求;(2)等應力控制直剪顯示,施加愈高的應力位準,潛變初始發生時間將有提早的現象;(3)單向度壓縮試驗顯示,當施加正向應力達1.6 MPa時,MX-80混合材料於黏土有效密度1600 kg/m3的變形行為至後期會有微幅膨脹的現象。第二部分為數值模擬成果:以等應力控制直剪實驗求取潛變參數A、α、m,而時間次序m值愈大代表具有較高的潛變特性,當B100純膨潤土以部分石英砂進行重量取代後 (B70-S30),由原先m值-0.905、-0.904降低至 (-0.935、-0.933),說明砂顆粒的骨架結構可能會提升力學穩定性,影響微觀結構的調整時間。本研究採用Drucker-Prager潛變模式,經由ABAQUS模擬分析結果顯示,混合型緩衝材料預計在20年內將達到飽和狀態,而潛變行為所造成的垂直位移量,長期而言向上推擠引致的變形僅13、15 mm,應不會對低放處置設施造成危害;但是當混合型緩衝材料達飽和後,因回脹壓力的增加,將造成處置窖有向上運動的行為。
摘要(英) Many countries consider the multiple barriers system as a feasible way for the final nuclear disposal. Bentonite has been preferred as a primary buffering material for the disposal of low-level nuclear waste. In order to realize the engineering properties of mixed buffer material, this study use laboratory tests to simulate the situation of the in-situ repository. The low-level nuclear waste disposal facility components are affected by hydrological (H) and mechanical (M) coupling processes simultaneously. Bentonite-sand mixtures as buffer material affected by H-M coupling effects, needs to keep the vault physically stable to avoid damage from displacements initiated by the weight of the vault and stresses exerted by other components of the multiple barriers system.Then, the finite element program ABAQUS was then employed to carry out the numerical simulation of the creep behavior.
MX-80 bentonite and K-V1 bentonite are used as raw clay materials in this study. These clays are mixed with Miaoli area silica sand to produce the buffer material. The buffer material was prepared by mixing 30 % of silica sand from 70 % of MX-80 bentonite and K-V1 bentonite. Modified proctor compaction test were conducted to determine the maximum dry unit weight and optimum moisture content of buffer material. Specimens of buffer material prepared according to the modified proctor compaction test were evaluated for swelling potential, hydraulic conductivity, and mechanical strength. Finally, using the constant stress direct shear test carried out for the saturated buffer material to obtains the creep parameters.
The first part of results from laboratory tests shows that (1) Mixtures with 30 % of silica sand and 70 % of MX-80 / K-V1 bentonites, satisfy safety requirements of SKB. (2) Results of the constant stress direct shear test shows that, the earlier the initial occurrence of creep happened as applied higher stress level. (3) One-dimensional compression tests shows that, the deformation behaiviors of MX-80 bentonite-sand mixtures at clay effective density of 1600 kg/m3 will be slightly expaned in anaphase as applied to normal stress 1.6 MPa. The second part is the numerical simulation results revealing the creep parameters obtained from constant stress direct shear tests. Parameters of A and α were the extrapolation of the relationship between (γ_0 ) ̇ and Dr, and the slope of the relationship between (γ_0 ) ̇ and Dr, respectively, and Dr is stress-dependent constant. The m values is a significantly factor in the evaluation of creep behaviors, and it can explian the phenomenon that the strain rates decreased with time and represent more prominent creep behavior as its vaules are much bigger. This study used the Drucker-Prager creep model in the numerical simulation. The instantaneous displacements caused by vault weight, and the results of simulation K-V1 bentonite-sand mixtures have higher displacements compared to MX-80. In the model tests, the mixed buffer material was predicted to be fully saturated in 20 years. The displacements due to creep behavior were found at the interface of buffer and backfill affected by the swelling pressure after saturation.
關鍵字(中) ★ 核廢料處置
★ 混合型緩衝材料
★ 直接剪力試驗
★ 潛變參數
★ 工程性質
關鍵字(英) ★ Nuclear disposal
★ Mixed buffer material
★ Direct shear test
★ Creep parameters
★ Engineering properties
論文目次 摘要 i
ABASTRACT ii
目錄 v
圖目錄 ix
表目錄 xv
第1章 緒論 1
1.1 研究動機 1
1.2 研究目的與內容 2
1.3 研究範圍與流程 4
第2章 文獻回顧 6
2.1 低放射性廢棄物最終處置之設計概念 6
2.1.1 低放射性廢棄物分類系統 7
2.2 緩衝材料之功能需求 9
2.3 國際間低放射性廢棄物處置現況 11
2.4 膨潤土基本特性 16
2.4.1 膨潤土之微觀構造 16
2.4.2 擴散雙層理論 17
2.4.3 膨潤土的水化機制 18
2.4.4 膨潤土回脹機制 19
2.5 國際間混合型緩衝材料應用情形 21
2.5.1 膨潤土候選材料基本物理與化學性質 21
2.5.2 膨潤土混合材料之黏土有效密度 23
2.5.3 國際間修正夯實法應用 26
2.6 緩衝材料工程性質 29
2.6.1 回脹性能 29
2.6.2 阻水性能 32
2.6.3 力學性能 33
2.7 土壤潛變模型理論、實驗與數值模擬 38
2.7.1 潛變基本性質 38
2.7.2 單向度壓縮試驗 40
2.7.3 不排水潛變試驗 42
2.7.4 潛變經驗模型理論 44
2.7.5 等應力控制直剪試驗 50
2.7.6 潛變數值模擬 58
2.8 綜合評析 61
第3章 研究計畫 62
3.1 研究內容與架構 62
3.2 試驗材料 63
3.2.1 Wyoming MX-80膨潤土 63
3.2.2 Yamagata K-V1 膨潤土 64
3.2.3 Silica sand石英砂 65
3.3 基本物理性質分析方法 66
3.3.1 自然含水量試驗 66
3.3.2 比重試驗 67
3.3.3 粒徑分析試驗 68
3.3.4 阿太堡限度試驗 69
3.3.5 亞甲基藍吸附試驗 70
3.4 混合型緩衝材料製備過程 71
3.4.1 前置作業-分樣處理 71
3.4.2 混合型緩衝材料目標含水量調配 71
3.5 修正夯實試驗 72
3.5.1 修正夯實試驗製備過程 75
3.6 回脹壓力與水力傳導係數試驗 77
3.6.1 回脹壓力與水力傳導係數試驗方法 77
3.6.2 混合型緩衝材料試體製作 78
3.6.3 回脹壓力與水力傳導係數試驗系統配置 80
3.6.4 回脹壓力試驗流程 81
3.6.5 水力傳導係數試驗流程 82
3.7 應變控制直接剪力試驗 83
3.7.1 試體製備前置作業 83
3.7.2 應變控制直剪試驗-OMC狀態試體 85
3.7.3 應變控制直剪試驗-飽和狀態試體 86
3.8 應力控制直接剪力試驗 87
3.8.1 試體製備與飽和前置作業 87
3.8.2 應力控制直剪試驗流程 88
3.9 單向度壓縮試驗 90
第4章 試驗結果與分析 91
4.1 膨潤土基本性質分析 92
4.1.1 MX-80、K-V1膨潤土基本性質 92
4.1.2 粒徑分析試驗 (沉降法) 93
4.1.3 亞甲基藍吸附試驗結果 94
4.2 回脹壓力試驗結果 96
4.2.1 B70-S30之定體積回脹壓力試驗結果 96
4.2.2 定體積回脹壓力試驗結果與瑞典SKB和日本PNC報告比較 98
4.2.3 不同石英砂取代量之定體積回脹壓力試驗結果 100
4.3 水力傳導係數試驗結果 102
4.3.1 B70-S30之水力傳導係數試驗結果 102
4.3.2 水力傳導係數試驗結果與瑞典SKB和日本PNC報告比較 105
4.4 應變控制直接剪力試驗結果 107
4.4.1 B70-S30之最佳含水量試體-不同正向應力之影響 107
4.4.2 B70-S30之飽和試體-不同正向應力之影響 111
4.4.3 B70-S30 -不同膨潤土之差異 116
4.4.4 B70-S30 -含水量因素對土壤特性參數的影響 118
4.4.5 未飽和試體-石英砂取代量之影響 119
4.4.6 飽和試體-石英砂取代量之影響 121
4.5 應力控制直接剪力試驗結果 123
4.5.1 B70-S30之應力控制直剪試驗結果 123
4.5.2 B100之應力控制直剪試驗結果 131
4.5.3 應力控制直接剪力試驗之試體含水量試驗結果 138
4.6 單向度壓縮試驗結果 140
4.6.1 MX-80膨潤土B70-S30於黏土有效密度1600 kg/m3之變形行為 141
4.6.2 MX-80膨潤土B70-S30流失至黏土有效密度1400 kg/m3之變形行為 143
第5章 ABAQUS數值模擬理論與討論 147
5.1 基礎理論 147
5.2 低放射性處置場幾何模型建立 150
5.3 水-力耦合之材料參數設定 152
5.3.1 水-力耦合分析參數 152
5.3.2 邊界條件設定 157
5.3.3 分析步與時間增量設定 160
5.4 地下水入侵處置坑道分析結果 162
5.5 混合型緩衝材料之長期潛變行為分析結果 165
第6章 結論與建議 172
6.1 結論 172
6.2 建議 175
參考文獻 176
附錄 190
附錄一 本研究B70-S30之應力控制試驗結果 190
A-1 各應力位準下之角應變與時間關係圖 190
A-2 各應力位準下之角應變速率與時間關係圖 194
附錄二 本研究B100之應力控制試驗結果 198
B-1 各應力位準下之角應變與時間關係圖 198
B-2 各應力位準下之角應變速率與時間關係圖 201
參考文獻 王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程學系,中壢。
中興工程顧問股份有限公司,(2013),低放射性廢棄物最終處置技術可行性評估報告。
台灣電力公司,(2017),LLWD1-SC-2016-02-V01-低放射性廢棄物最終處置技術評估報告,第9頁、第16頁、第32-34頁、第81頁。
台灣電力公司,(2019),LLWD2-ED-2019-05-V03-低放射性廢棄物最終處置技術精進計畫,膨潤土材料施工方法研究,第2-1頁。
台灣電力公司資訊揭露蘭嶼低放貯存場營運狀況 (民國2020年)。檢自https://www.taipower.com.tw/tc/page.aspx?mid=219&cid=202&cchk=3d219bde-c8fa-4916-9e0d-ebb0038cf7af (Feb. 02, 2021)
行政院原子能委員會放射性物料管理局,(2019),「核廢料最終處置技術及世界各國高、低放最終處置場址選擇與興建近況報告」,第10頁、第12-16頁、第25-26頁。
呂曉萱,(2020),「低放射性廢棄物最終處置場夯實回填材料之工程特性研究」,碩士論文,國立中央大學土木工程學系,中壢。
李冠宏,(2016),「最終處置場近場環境對緩衝材料回脹壓力之影響」,碩士論文,國立中央大學土木工程學系,中壢。
吳銘志,(2017),「深地層環境下放射性廢棄物處置場之緩衝回填材料核種吸附參數研究」,科技部補助專題研究計畫期末報告,第3頁。
柯輔松,(1997),「放射性廢料處置場回填材料之工程性質」,碩士論文,國立中央大學土木工程學系,中壢。
紀立民,(2015),「除役廢棄物分類包裝貯存技術研究」,行政院原子能委員會放射性物料管理局,委託研究計畫研究報告,第5頁。
崔素麗、張虎元、梁健、劉吉勝,(2009),「膨潤土-砂的膨脹特性與蒙脫石質量比率」,水文地質工程地質,蘭州。
張虎元、劉吉勝、崔素麗、梁健,(2010),「石英砂摻量對混合型緩衝回填材料抗剪強度的控制機制」,岩石力學與工程學報,蘭州。
張瑞宏、黃偉慶,(2015),「深地層處置設施緩衝材料熱-水力-力學耦合模擬研析」,行政院原子能委員會放射性物料管理局,委託計畫研究期末報告,第118-119頁。
張道盛,(2019),「用過核子燃料最終處置場之母岩破裂帶影響效應分析及現地實驗數值模擬」,碩士論文,國立中央大學土木工程學系,中壢。
黃偉慶,(2009),「低放射性廢棄物最終處置回填材料於近場環境下之長期穩定性研究」,行政院原子能委員會放射性物料管理局,委託研究計畫研究報告,第7-11頁。
黃秉修、劉芳琹,(2017),「赴日本參加低放射性廢棄物研討會議暨營運設施技術參訪會議」,台灣電力公司,第6頁、第9頁、第19-22頁。
黃偉慶,(2019),「109年用過核子燃料最終處置設施設計之審驗與管制技術研究」,行政院原子能委員會放射性物料管理局,委託計畫研究期末報告,第62-64頁。
楊俊、雷俊安、張國棟,(2015),「不同剪切速率對改良膨脹土抗剪强度影響研究」,水利水电技术,第46卷,湖北。
董家鈞,(2014),「低放射性廢棄物處置安全管制技術發展」,行政院原子能委員會放射性物料管理局,委託研究計畫研究報告,第3頁。
董家鈞,(2019),「108年低放射性廢棄物處置安全評估驗證技術研究」,行政院原子能委員會放射性物料管理局,委託計畫研究期末報告,第12頁。
郭哲睿,(2020),「深地層最終處置場緩衝材熱-水-力參數量測及小型耦合試驗」,碩士論文,國立中央大學土木工程學系,中壢。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程學系,中壢。
陳盈倫,(2018),「緩衝材料在不同圍壓之工程性質」,碩士論文,國立中央大學土木工程學系,中壢。
單信瑜,(1997),「放射性廢料處置場緩衝回填材料物性及化性之介紹」,核能研究所放射性廢料最終處置核種遷移與水文地質相關技術訓練研討會 (第二期) 講義。
萬鑫森,(1991),「基礎土壤力學」,茂昌圖書。
賈艷靈、張虎元、張明,(2013),「混合型緩衝回填材料抗剪強度特性研究」,地下空間與工程學報,蘭州。
趙杏媛、張有瑜,(1990),「黏土礦物與黏土礦物分析」,海洋出版社,北京。
賴彥丞,(2020),「低放射性廢棄物最終處置場緩衝材料之潛變試驗及變形分析」,碩士論文,國立中央大學土木工程學系,中壢。
闞衛明、劉愛民,(2008),「剪切速率對粉質黏土抗剪强度的影響」,中國港灣建設,天津。
鄭百宏,(2014),「以膨潤土製作緩衝回填材料之性能評估」,碩士論文,國立臺灣大學土木工程學系,台北。
蘇依豪,(2005),「最終處置場緩衝材料地下水入侵模擬研究」,碩士論文,國立中央大學土木工程學系,中壢。
クニミネ工業株式会社 (民國2021年3月1日)。檢自https://www.kunimine.co.jp/download/pdf/catalog/catalog_kunigel_v1.pdf (March. 03, 2021)
小高猛司、寺本優子,(2009),「不飽和および飽和条件下での圧縮ベントナイトのせん断破壊特性」,地盤工学ジャーナル。
高橋彰,(2016),「原環センタ:1998年版放射性廃棄物データブック」,RWMC,公益財団法人 原子力環境整備促進・資金管理センター。

公益財団法人 原子力環境整備促進・資金管理センター,(2015),「管理型処分技術調査等事業地下空洞型処分施設閉鎖技術確証試験」,平成19年度~平成26年度の取りまとめ報告書。
秋山吉弘,寺田賢二,山田淳夫,(2016),「地下空洞処分設施工技術の確証試験の概要」,RWMC TRJ 15001,原環センター技術報告書。
動力戶・核燃料開発事業グループ,(1998),「一膨潤圧、透水係數、一軸圧縮強度及彈性係數」,PNC TN8410 98-021,東海事業所。
動力戶・核燃料開発事業グループ,(2004),「幌延の地下水環境下におけるベントナイト混合材料の力学特性に関する研究」,業務委託報告書。
棚井憲治,菊池広人,中村邦彦,田中幸久,廣永道彦,(2010),「ベントナイト系材料の標準的室内試験法構築に向けての試験法の現状調査と試験による検討」,JAEA-Research 2010-025,日本原子力研究開発機構/電力中央研究所共同研究成果報告。
総合資源エネルギー調查会,(2007),「低レベル放射性廃棄物の余裕深度処分 に係る安全規制について」,中間報告,原子力安全・保安部会 廃棄物安全小委員会。
A ̇kesson, M., Kristensson, O., Bo ̈rgesson, L., & Dueck, A. (2010a). “THM modelling of buffer, backfill and other system components.” SKB Technical Report TR-10-11, Critical processes and scenarios, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
A ̇kesson, M., Bo ̈rgesson, L., & Kristensson, O. (2010b). “SR-site data report.” SKB Technical Report TR-10-44, THM modelling of buffer, backfill and other system components, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Agus, S. S., Schanz, T., Fredlund, D. G. (2010). “Measurements of suction versus water content for bentonite-sand mixtures.” Canadian Geotech. J., 47, 583-594.
Anim, K. (2010). “Effect of strain rate on the shear strength of questa rock pile materials.” Master Thesis, New Mexico Institute of Mining and Technology, Socorro. 
ASTM D3080M-11. (2014). “Standard test method for direct shear test of soils under consolidated drained conditions.” PA.
Akgu ̈n, H., Ada, M., & Kockar, M. K. (2014). “Performance assessment of a bentonite-sand mixture for nuclear waste isolation at the potential Akkuyu nuclear waste disposal site, southern Turkey.” Environ. Earth Sciences, 014, 3837, Turkey.
ASTM D5084-16a. (2016). “Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter.” PA.
ASTM D854-14 (2018). “Standard test methods for specific gravity of soil solids by water pycnometer.” PA.
ASTM D1557-12e1 (2018). “Standard test methods for laboratory compaction characteristics of soil using modified effort (2,700 kN-m/m3).” PA.
ASTM D2435M-11. (2020). “Standard test methods for one-dimensional consolidation properties of soils using incremental loading.” PA.
ASTM D6913M-17. (2021). “Standard test methods for particle-size distribution (gradation) of soils using sieve analysis.” PA.
ASTM D7928-21. (2021). “Standard test methods for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis.” PA.
American Colloid Company. (2021 March). Retrieved from https://www.mineralstech.com/docs/default-source/performance-materials-documents/american-colloid-company/product-solutions/mti_mcst_tds_mx-80.pdf?sfvrsn=beea2df7_2 .
Bjerrum, L. (1954). “Geotechnical properties of norwegian marine clays.” Ge ́otech., 4, 49-69.
Bo ̈rgesson, L., Ho ̈kmark, H., & Karnland, O. (1988). “Rheological properties of sodium smectite clay.” SKB Technical Report TR-88-30, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Bo ̈rgesson, L., & Hernelind, J. (1999). “Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole.” SKB Technical Report TR-99-41, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Bo ̈rgesson, L., Fa ̈lth, B., and Hernelind, J. (2006). “Water saturation phase of the buffer and backfill in the KBS-3V concept.” SKB Technical Report TR-06-14, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Bo ̈rgesson, L., Dueck, A., & Johannesson, L. E. (2010). “Material model for shear of the buffer-evaluation of laboratory test results.” SKB Technical Report TR-10-31, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Bergstro ̈m, U., Pers, K., & Alme ́n, Y. (2011). “International perspective on repositories for low level waste.” SKB Report R-11-16, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Bag, R. (2011) Coupled thermo-hydro-mechanical-chemical behaviour of MX80 bentonite in geotechnical applications. Cardiff University.
Bennett, C. (2014) An experimental study on the hydraulic conductivity of compacted bentonites in geoenvironmental applications. Cardiff University.
Cho, W. J., Lee, J. O., & Kwon, S. (2011). “An analysis of the factors affecting the hydraulic conductivity and swelling pressure of kyungju Ca-bentonite for use as a clay-based sealing material for a high-level waste repository.” Nuclear Engineer & Technology, 44, 1.
Cui, Y. J., Tang, A. M., Qian, L. X., Ye, W. M., and Chen, B. (2011). “Thermal-mechanical behavior of compacted GMZ bentonite.” Janpanese Geotechnical Society, 51, 1065-1074, Tokyo.
Cui, S. L., Zhang, H. Y., & Zhang, M. (2012). “Swelling characteristics of compacted GMZ bentonite–sand mixtures as a buffer/backfill material in China.” Engineering Geology, 141-142, 65-73. 
Delage, P., Howat, M. D., & Cui, Y. J. (1998). “The relationship between suction and swelling properties in a heavily compacted unsaturated clay.” Engineering Geology, 50, 31-48.
Delage, P., Marcial, D., Cui, Y. J. & Ruiz, X. (2006). “Ageing effects in a compacted bentonite: a microstructure approach.” Ge ́otech. J., 56(5), 291-304.
Delage, P. (2007). “Microstructure features in the behavior of engineered barriers for nuclear waste disposal.” Soil Mechanics of Unsaturated Soils, 11-32.
Dueck, A., Bo ̈rgesson, L., & Johannesson, L. E. (2010a). “Stress-strain relation of bentonite at undrained shear.” SKB Technical Report TR-10-32, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Dueck, A. (2010b). “Thermo-mechanical cementation effects in bentonite investigated by unconfined compression tests.” SKB Technical Report TR-10-41, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Dixon, D. A., Man, A., Rimal, S., Stone, J. & Siemens, G. (2018). “Bentonite seal properties in saline water.” NWMO TR-2018-20, Toronto.
Dixon, D. A. (2019). “Review of the T-H-M-C properties of MX-80 bentonite.” NWMO-TR-2019-07, Toronto.
Geier, J., Thatcher, K. E., Newson, R. K., Benbow, S. J., & Dessirier, B. (2018). “Research on resaturation of bentonite buffer.” SSM Technical Note 2010:31, Strålsäkerhetsmyndigheten Swedish Radiation Safety Authority, Stockholm, Sweden.
Hoek, E., & Brown, E. T. (1980). “Empirical strength criterion for rock masses.” J. Geotech. Eng. Div., ASCE, 106(GT9), 1013-10135.
Han, H. S., Xia, M. F., Shen, L. T., & Bai, Y. L. (1997). “Statistical formulation and experimental determination of growth rate of micrometer cracks under impact loading.” Inter. J. of Solids & Structure, 34, 2905-2925.
Han, K., Heninonen, W. J., & Bonne A. (1997). “Radioactive waste disposal : global experience and challenges.” IAEA Bulletin, 39, 33-41. 
Hedin, A., Dixon, D., & Wersin, P. (2006). “Buffer and backfill process report for the safety assessment SR-Can.” SKB Technical Report TR-06-18, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Hedin, A. (2010). “Data report for the safety assessment SR-site.” SKB Technical Report TR-10-52, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Japan Nuclear Cyclic Development Institute. (2000). “H12: project to establish the scientific and technical base for HLW disposal in Japan.” JNC TN1410 2000-003, Supporting report 2, Repository engineering technology, Japan.
Johannesson, L. E., and Nilsson, U. (2006). “Deep repository-engineered barrier systems.” SKB Report R-06-73, Geotechnical behaviour of candidate backfill materials, Laboratory tests and calculations for determining performance of the backfill, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Jo ̈nsson, B., A ̇kesson, T., Jo ̈nsson, B., Meehdi, S., Janiak, J., & Wallenberg, R. (2009). “Structure and forces in bentonite MX-80.” SKB Technical Report TR-09-06, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Jooybari, S. H. and Chen, Z. (2019). “Calculation of re-defined electrical double layer thickness in symmetrical electrolyte solutions.” Physics, 15, 102501.
Kuhn, M. R., and Mitchell, J. K. (1993). “New Perspectives on soil creep.” J. of Geotech. Engrg., ASCE, 119(3), 507-524.
Kincardine, M. (2003). “LLW geotechnical feasibility study western waste management facility.” Golder Associates Ltd., Ontario Power Generation Nuclear Waste Management Division, Canada.
Komine, H. (2004) “Simplified evaluation on hydraulic conductivities of sand-bentonite mixture backfill.” Applied Clay Science, 26, 1-4. 13-19, Japan.
Karnland, O., Olsson, S., & Nilsson, U. (2006). “Mineralogy and sealing properties of various bentonites and smectite-rich clay minerals.” SKB Technical Report TR-06-30, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Karnland, O., Nilsson, U., Weber, H., & Wersin, P. (2008). “Sealing ability of wyoming bentonite pellets foreseen as buffer material laboratory results.” Physics and Chemistry of the Earth, 33, 472-475.
Karnland O., Olsson, S., Dueck A., Birgersson M., Nilsson U., Hernan, H. T., Pedersen, K., Nilsson, S., Eriksen, T., & Rosborg, B. (2009). “Long term test of buffer material at the A ̈spö Hard Rock Laboratory, LOT project.” SKB Technical Report TR-09-29, Final report on the A2 test parcel, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Komine, H. (2009). “Swelling characteristics of bentonites in artificial seawater.” Canadian Geotechnical J., 46, 177-189, Canada.
Komine, H. (2010). “Predicting hydraulic conductivity of sand-bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes.” Engrg. Geology, 114, 123-134, Japan.
Khan, M. I. (2012). Hydraulic conductivity of moderate and highly dense expansive clays. Schriftenreihe des Lehrstuhls, Bochum, Germany.
Kohno, M., Nara, Y., Kato M., & Nishimura T. (2019). “Effects of clay-mineral type and content on the hydraulic conductivity of bentonite-sand mixtures made of Kunigel bentonite from Japan.” Clay Minerals, 53, 721-732, Japan.
Kronberg, M., Johannesson, L. E., & Eriksson P. (2020). “Strategy, adaptive design and quality control of bentonite materials for a KBS-3 repository.” SKB Technical Report TR-20-03. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Lambe, T. W. (1958). “The structure of compacted clay.” J. Engrg. Mech. Div., ASCE, 84(SM2), 1654, 1-34. 
Ladanyi, B. and Arteau, J. (1978) “Effect of specimen shape on creep response of a frozen sand.” International Symposium on Ground Freezing, 141-153.
Lin, H. D., and Wang, C. C. (1998). “Stress-strain-time fuction of clay.” J. Geotech. Geoenviron. Eng. Div., ASCE, 124(4), 289-296.
Lloret, A., Villar, M. V., Sanchez, M., Gens, A., Pintado, X., & Alonso, E. E. (2003). “Mechanical behavior of heavily compacted bentonite under high suction changes.” Ge ́otechnique, 53(1), 27-40.
Lacasse, S., and Berre, T. (2005). “Undrained creep susceptibility of clays.” Soil Mech. and Geotechnical Eng., 15.
Liu, L., Neretnieks, I., & Moreno, L. (2011). “Permeability and expansibility of natural bentonite MX-80 in distilled water.” Physics and Chemistry of the Earth, 36, 1783-1791.
Leupin, O. X., Smith, P., Marschall, P., Johnson, L., Savage, D., Cloet, V., Schneider, J., & Senger, R. (2016). “High-level waste repository-induced effects.” NAGRA Technical Report 14-13, National Cooperative for the Disposal of Radioactive Waste, Switzerland.
Lang, L. (2019). Hydro-mechanical behaviour of bentonite-based materials used for disposal of radioactive wastes. Schriftenreihe des Lehrstuhls, Bochum, Germany.
Mersi, G., and Olson, R. E. (1971). “Consolidation characteristics of montmorillonite.” Ge ́otechnique, 21(4), 341-352. J. Engrg. Mech. Div., ASCE, 99(SM1), 123-137.
Mesri, G., Febres Cordero, Shields, E., D. R., and Castro A. (1981). “Shear stress-strain-time behavior of clays.” Géotechnique, 31(4), 537-552.
Madsen, F. T. and Mu ̈ller-Vonmoos, M. (1989). “The swelling behavior of clay.” Applied Clay Science, 4, 143-156.
Mesri, G., Feng, T. W., Ail, S., & Hayat, T. M. (1994). “Permeability characteristics of soft clays caracteristiques de la permeabilite.” Int. Society For Soil Mechanics and Geot. Eng., New Delhi, India.
Mollins, L. H., Stewart, D., & Cousen, T. W. (1996). “Predicting the properties of bentonite-sand mixtures.” Clay Minerals, 31, 243-252.
Mitchell, J. K. and Soga, K. (2005). Fundamentals of soil behavior, 3rd ed., John Wiley & Sons Inc., Canada.
Murray, H. H. (2007). “Occurrences, processing and application of kaolins, bentonite, palygorskitesepiolite, and common clays.” Applied Clay Mineralogy, 2nd ed., Elsevier Science, Amsterdam.
Miyoshi, Y., Tsukimura, K., Morimoto, K., Suzuki, M. & Takagi, T. (2018). “Comparison of methylene blue adsorption on bentonite measured using the spot and colorimetric methods.” Applied Clay Science, 151, 140-147, Japan.
Nillsson, A. C., Tullborg, E. L., Smellie, J., Gimeno, M. J., Go ́mez, J. B., Auque ́, L. F., Sandstro ̈m, B., & Pedersen, K. (2011). “SFR site investigation bedrock hydrogeochemistry.” SKB Technical Report R-11-06, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Pusch, R. (1980). “Swelling pressure of highly compacted bentonite.” SKB Technical Report TR-80-13, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Pusch, R. (1982). “Mineral-water interactions and their influence on the physical behavior of highly compacted Na-bentonite.” Canadian Geotech. J., 19, 381-387.
Pusch, R. (1983). “Stress/strain/time properties of highly compacted bentonite.” SKB Technical Report TR-83-47, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Pusch, R. (1986). “Settlement of canister with smectite clay envelopes in deposition holes.” SKB Technical Report TR-86-23, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Pusch, R., Bo ̈rgesson, L., & Erlstro ̈m, M. (1987). “Alteration of isolating properties of dense smectite clay in repository environment as exemplified by seven pre-quarternary clays.” SKB Technical Report TR-87-29, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Pusch, R. (1992). “Use of bentonite for isolation of radioactive waste products.” Clay Minerals, 27, 353-361, Sweden.
Pusch, R., and Adey, R. (1999). “Creep in buffer clay.” SKB Technical Report TR-99-32, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Pusch, R. (1999). “Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW.” SKB Technical Report TR-99-33, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Pusch, R. (2001). “The buffer and backfill handbook.” SKB Technical Report TR-02-12, Part 2: materials and techniques, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Pusch, R. (2002). “The buffer and backfill handbook.” SKB Technical Report TR-02-20, Part 1: definitions, basic relationships, and laboratory methods, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Priyanto, D. G., Kim, C-S., and Dixon, D. A. (2013). “Geotechnical characterization of a pontential shaft backfill material.” NWMO TR-2013-03, Atomic Energy of Canada Limited, Toronto.
Rutqvist, J., and Tsang, C. F. (2008). “Review of SKB’s work on coupled THM processes within SR-site.” SKI Report 2008:08, External review contribution in support of SKI’s and SSI’s review of SR-Can, California, USA. 
Rawat, A. (2019). Coupled hydro-mechanical behavior of a compacted bentonite-sand mixture: experimental and numerical investigations. Schriftenreihe des Lehrstuhls, Bochum, Germany.
Sivapullaiah, P. V., Sridharan, A., & Stalin, V. K. (2000). “Hydraulic conductivity of bentonite–sand mixtures.” Canadian Geotech. J., 37(2), 406-413.
Sposito, G. (2008). The chemistry of soils, 2nd ed., Oxford university press Inc., New York.
Shirazi, S. M., Kazama, H., Salman, F. A., Othman, F., & Akib, S. (2010). “Permeability and swelling characteristics of bentonite.” International J. of the Physical Sciences, 5(11), 1647-1659, Japan.
Sridharan, A., and Gurtug, Y. (2004). “Swelling behaviour of compacted fine-grained soils.” Eng. Geol., 72(1), 9-18.
SKB TR-06-18. (2006). “Buffer and backfill process report for the safety assessment SR-Can.” Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
SKB TR-10-15. (2010). “Design, production and initial state of the buffer.” SKB Technical Report TR-10-15, 41, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
SKB TR-11-01. (2011a). “Long-term safety for the final repository for spent nuclear fuel at Forsmark.” SKB Technical Report TR-11-01, Main report of the SR-site project Volume I, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
SKB TR-11-01. (2011b). “Long-term safety for the final repository for spent nuclear fuel at Forsmark.” SKB Technical Report TR-11-01, Main report of the SR-site project Volume II, 290, 390-391, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
SKB TR-11-01. (2011c). “Long-term safety for the final repository for spent nuclear fuel at Forsmark.” SKB Technical Report TR-11-01, Main report of the SR-site project Volume III, 595, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden. 
Syafiarti, A. I. D. (2019). “Experimental and numerical analysis on creep of buffer material in nuclear waste deposition hole.” Master Thesis, National Central University, Taiwan.
Villar, M. V., and Lloret, A. (2004). “Influence of temperature on the hydro-mechanical behavior of a compacted bentonite.” Applied Clay Science, 26, 337-350.
Villar, M. V. (2006). “Infiltration tests on a granite/bentonite mixture: Influence of water salinity.” Applied Clay Science, 31, 96-109.
Villar, M. V. (2008). “Influence of dry density and water content on the swelling of a compacted bentonite.” Applied Clay Science, 39, 38-49.
Wang, Q., Tang, A. M., Cui, Y. J., Delage, P., and Gatmiri, B. (2012). “Experimental study on the swelling behaviour of bentonite/claystone mixture.” Engineering Geology, 124, 59-69, France.
Wang, Q., Tang, A. M., Cui, Y. J., Delage, P., Barnichon, J. S., and Ye, W. M. (2013). “The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture.” Soils and Foundations. 53, 232-245, France.
Wang, Q., Cui, Y. J., Tang, A. M., Barnichon, J. S., Saba, S., and Ye, W. M. (2018). “Hydraulic conductivity and microstructure changes of compacted bentonite/sand mixture during hydration.” Engineering Geology, 164, 67-76, France.
Xu, L., Ye, W. M., Chen, B., Chen Y. G., & Cui, Y. J. (2016). “Experimental investigations on thermos-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials.” Engineering Geology, 213, 46-54, China.
Yin, J. H., Tong, F. (2001). “Constitutive modeling of time-dependent stress-strain behaviour of saturated soils exhibiting both creep and swelling.” Can. Geotech. J., 48, 1870-1885.
Zhu, J. G. (2007) Rheological behavior and elastic viscoplastic modeling of soil. Science Press, Beijing.
Zhu, C. M., Ye, W. M., Chen, Y. G., Chen, B., & Cui, Y. J. (2013). “Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Engineering Geology, 166, 77-80.
Zhao, D. (2019). “Study on the creep behavior of clay under complex triaxial loading in relation to the microstructure.” Materials Science, France.
指導教授 黃偉慶 鐘志忠(Wei-Hsing Huang Chih-Chung Chung) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明