博碩士論文 108322095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:18.188.174.246
姓名 林桓聖(Huan-Sheng Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 水文地質條件不確定性下的地下水時空變化模擬
(Simulation of underground spatiotemporal changes under uncertainty of hydrogeological conditions)
相關論文
★ 結合資料探勘方法建立屏東平原含水層水文地質參數推估模式★ 探討颱風特性於農損及坡地災害遙測影像辨識之研究
★ 不同時空降雨型態對於地下水補注量之探討—以屏東平原為例★ 以訊號分析資料探勘方法探討PM2.5污染傳播時空特徵及相應之天氣條件
★ 運用訊號分析方法於地下水資源旱災韌性與風險評估★ 探討都市熱島效應對臺北地區午後雷雨及地下水之影響
★ 建立台灣北部交通與氣象因子對於空氣污染影響之機器學習模型★ 以深度學習方法建立地下水位預警之風險評估模型
★ 以機器學習預測海溫及熱帶氣旋特徵對於珊瑚白化之影響 – 以澎湖南方四島為例★ 探討臺灣地震活動特徵與環境變數相關性分析
★ 以機器學習方法建立巨觀尺度降雨氣候水資源推估模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地下水是許多地區的重要淡水資源,也是乾旱期間重要的備用水源。因此,了解地下水資源的特性至關重要,因此可以透過模擬出正確的水文地質模型來探索。不過若想建置完善的水文地質模型,就必須掌握正確的地質條件和水文地質參數,才能建立有效的地下水流數值模擬。但是,地質條件總是存在一些不確定性,並且會對於地下水時空變化產生影響。
因此,本研究使用MODFLOW地下水數值模式來建置模型,模型建置可分為ideal case(假設案例)與real case(實際案例),假設案例是透過地下水數值模擬與砂箱實驗來進行實驗對照組之比較,因此透過敏感度分析來探討水力傳導係數細部變化之影響,藉此改變不透水層之設置來觀察不同含水層的地下水位之變化;實際案例是模擬嘉義頭橋民雄工業區而模擬時間分為一年及五年,且可從第一含水層模擬結果中與實際地下水資料比較R2均能達到0.9,從研究結果表明在不同的水文地質參數、地質條件和其他條件之下,地下水的變化也會有所不同。
另外,還透過經驗正交函數(EOF)來探討假設案例和實際案例的時空間特徵,經由本研究可發現在有不透水層與無不透水層兩者的差異,以及當一個區域為不透水層的分佈時,對於此區域所造成的地下水位變動趨勢和流動特徵的影響。此外,從研究結果中顯示無論是在假設案例或實際案例上,都能藉由EOF的方法來有效區分出不同的水文地質參數分布情形。因此,如果未來有相關單位想要進行水資源管理調配時,可針對第一含水層來進行探討比較,如果發現同個區域卻有不同的地下水位特徵時,那麼就有很大的可能是受到不透水層分佈的影響。
摘要(英) Groundwater is a reliable freshwater resource in many areas, and it is also an important source of backup water during the drought. Therefore, understanding the characteristics of groundwater resources is crucial and can be explored by building correct hydrogeological models for simulation. To build a perfect hydrogeological model, it is necessary to grasp the correct geological conditions and hydrogeological parameters to establish an effective numerical simulation of groundwater flow. However, geological conditions always contain some uncertainties, which may cause a certain impact on the spatiotemporal changes of groundwater.
Therefore, this study uses the groundwater flow numerical model, MODFLOW, to build the groundwater simulation model, divided into the ideal case and real case, the ideal case is to compare the experimental control group through groundwater numerical simulation and sandbox experiment, In addition, through sensitivity analysis to explore the impact of the hydraulic derivation of the detailed changes, change the setting of aquiclude to observe the changes of groundwater level in different aquifers, the real case simulates the Minxiong Industrial zone in Touqiao, Chiayi, and the simulation time is divided into one year and five years, the simulation results show the first aquifer R2 can all reach 0.9 compare with the groundwater real observation data, the results show that under different hydrological parameters, geology, and other conditions, groundwater will have different patterns of variation.
In addition, the Empirical Orthogonal Function (EOF) is used to explore the temporal and spatial characteristics of ideal cases and real cases, through this research, it can be found that there are differences between an unconfined aquifer and a confined aquifer, and when this area is a confined aquifer, the influence on the trend and flow characteristics of the groundwater level caused by this area. Besides, the research results show that whether it is an ideal case or a real case, the EOF method can be used to effectively distinguish different hydrogeological parameter distribution situations. Therefore, if relevant units want to conduct water resources management and deployment in the future, they can discuss and compare the first aquifer, if it is found that the same area has different groundwater level characteristics, it is likely to be affected by the confined aquifer.
關鍵字(中) ★ 地下水模擬
★ MODFLOW
★ 不確定性
★ 經驗正交函數
★ 水文地質
關鍵字(英) ★ Groundwater simulation
★ MODFLOW
★ Uncertainty
★ EOF
★ Hydrogeology
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii

第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 研究架構 3

第二章 文獻回顧 6
2-1 地下水文系統不確定性 6
2-2 水文地質對地質模型之影響 8
2-3 嘉義梅山斷層的地形與地質之相關研究回顧 12
2-4 MODFLOW國內外應用研究之相關文獻 17

第三章 研究方法 25
3-1 研究架構 25
3-2 研究區域概述 29
3-3 MODFLOW 40
3-4 資料收集與描述 43
3-5 經驗正交函數(EOF) 65
第四章 結果與討論 69
4-1 假設案例與砂箱實驗 69
4-2 敏感度分析 83
4-3 實際案例地下水數值模擬與實際地下水位比較 89
4-4 經驗正交函數(EOF)結果分析 111

第五章 結論與建議 125
5-1 結論 125
5-2 建議 125
5-3 貢獻 126

參考文獻 127
評審意見回覆表 137
參考文獻 Alaviani, F., Sedghi, H., Moghaddam, A. A., & Babazadeh, H. (2018). Adopting Gms–Pso model to reduce groundwater withdrawal by integrated water resources management. International Journal of Environmental Research, 12(5), 619-629.
Anderson, M. P., & Woessner, W. W. (1992). The role of the postaudit in model validation. Advances in Water Resources, 15(3), 167-173.
Bear, J. (2012). Hydraulics of groundwater: Courier Corporation.
Bekesi, G., McGuire, M., & Moiler, D. (2009). Groundwater allocation using a groundwater level response management method—Gnangara groundwater system, Western Australia. Water resources management, 23(9), 1665-1683.
Berg, S. J., & Illman, W. A. (2011). Capturing aquifer heterogeneity: Comparison of approaches through controlled sandbox experiments. Water Resources Research, 47(9).
Bird, G. (1981). Monte-Carlo simulation in an engineering context. Progress in Astronautics and Aeronautics, 74, 239-255.
Black, J., & Kipp Jr, K. (1981). Determination of hydrogeological parameters using sinusoidal pressure tests: A theoretical appraisal. Water Resources Research, 17(3), 686-692.
Bouwer, H. (1978). Groundwater hydrology. Retrieved from
Brunner, P., Simmons, C. T., Cook, P. G., & Therrien, R. (2010). Modeling surface water‐groundwater interaction with MODFLOW: Some considerations. Groundwater, 48(2), 174-180.
Chen, W.-S., Huang, B.-S., Chen, Y.-G., Lee, Y.-H., Yang, C.-N., Lo, C.-H., . . . Lin, C.-C. (2001). 1999 Chi-Chi earthquake: a case study on the role of thrust-ramp structures for generating earthquakes. Bulletin of the Seismological Society of America, 91(5), 986-994.
Cheng, X., & Dunkerton, T. J. (1995). Orthogonal rotation of spatial patterns derived from singular value decomposition analysis. Journal of Climate, 8(11), 2631-2643.
Chitsazan, M., & Movahedian, A. (2015). Evaluation of artificial recharge on groundwater using MODFLOW model (case study: Gotvand Plain-Iran). Journal of Geoscience and Environment Protection, 3(05), 122.
Custodio, E. (2002). Aquifer overexploitation: what does it mean? Hydrogeology journal, 10(2), 254-277.
Dubus, I. G., Brown, C. D., & Beulke, S. (2003). Sources of uncertainty in pesticide fate modelling. Science of The Total Environment, 317(1-3), 53-72.
Fennell, J., Forrest, F., & Klebek, M. (2011). An approach to managing cumulative effects to groundwater resources in the Alberta oil sands.
Fookes, P. (1997). Geology for engineers: the geological model, prediction and performance. Quarterly Journal of Engineering Geology and Hydrogeology, 30(4), 293-424.
Gee, G. W., & Or, D. (2002). 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods, 5, 255-293.
Højberg, A., & Refsgaard, J. (2005). Model uncertainty–parameter uncertainty versus conceptual models. Water Science and Technology, 52(6), 177-186.
Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27(9), 1119-1152. doi:10.1002/joc.1499
Harbaugh, A. W., Banta, E. R., Hill, M. C., & McDonald, M. G. (2000). Modflow-2000, the u. s. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process. Open-file Report. U. S. Geological Survey(92), 134.
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417-441. Retrieved from <Go to ISI>://000202766900037
Hsu, L. (1984). Pleistocene formation with dissolved-in-water type gas in the Chianan plain, Taiwan. Petroleum Geology of Taiwan, 20, 199-213.
Huang, Y.-Y. (2020). 不同時空降雨型態對於地下水補注量之探討-以屏東平原為例. National Central University,
Illman, W. A., Berg, S. J., & Yeh, T. C. J. (2012). Comparison of approaches for predicting solute transport: Sandbox experiments. Groundwater, 50(3), 421-431.
Illman, W. A., Zhu, J., Craig, A. J., & Yin, D. (2010). Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study. Water Resources Research, 46(4).
Jang, C.-S., Chen, C.-F., Liang, C.-P., & Chen, J.-S. (2016). Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain. Journal of Hydrology, 533, 541-556.
Johnson, A. I. (1967). Specific yield: compilation of specific yields for various materials: US Government Printing Office.
Kuo, E.-D. (2019). 運用訊號分析方法於地下水資源旱災韌性與風險評估. National Central University,
Lenhart, T., Eckhardt, K., Fohrer, N., & Frede, H.-G. (2002). Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 645-654.
Lin, K.-P., Chou, P.-C., & Dong-Sin, S. (2016). To study hydrological variabilities by using surface and groundwater coupled model–A case study of PingTung plain, Taiwan. Procedia Engineering, 154, 1034-1042.
Lin, Y.-Q. (2018). 結合資料探勘方法建立屏東平原含水層水文地質參數推估模式. National Central University,
Lin, Z.-s. (2014). 特定降雨事件下濁水溪沖積扇及名竹盆地地下水補注效益評估. National Central University,
Ling, C. W. (1993). Characterizing uncertainty: a taxonomy and an analysis of extreme events. University of Virginia,
Mahadevan, S. (1997). Monte carlo simulation. Mechanical Engineering-New York and Basel-Marcel Dekker-, 123-146.
Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., & Barlow, P. M. (2008). GSFLOW-Coupled Ground-water and Surface-water FLOW model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). US Geological Survey Techniques and Methods, 6, 240.
McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model: US Geological Survey.
Morway, E. D., Gates, T. K., & Niswonger, R. G. (2013). Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system. Journal of Hydrology, 495, 216-237. doi:10.1016/j.jhydrol.2013.04.047
Newman, S., & Wierenga, P. J. (2003). Comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites.
Nilsson, B., Højberg, A., Refsgaard, J., & Troldborg, L. (2007). Uncertainty in geological and hydrogeological data. Hydrology and Earth System Sciences, 11(5), 1551-1561.
Niswonger, R. G., Panday, S., & Ibaraki, M. (2011). MODFLOW-NWT, a Newton formulation for MODFLOW-2005. US Geological Survey Techniques and Methods, 6(A37), 44.
Omori, F. (1907). Earthquake of the Chiayi area. Taiwan, 1906: Introduction of Earthquake, 103-147.
Omori, F. (1907). Preliminary note on the Formosa earthquake of March 17, 1906. Bulletin of the Imperial Earthquake Investigation Committee, 1(2), 53-69.
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(7-12), 559-572. Retrieved from <Go to ISI>://000202849800065
Poeter, E., & Anderson, D. (2005). Multimodel ranking and inference in ground water modeling. Groundwater, 43(4), 597-605.
Refsgaard, J., & Storm, B. (1996). Comment on ‘A discussion on distributed modelling’by KJ Beven. Distributed Hydrological Modeling, 279-287.
Refsgaard, J. C. (1990). Terminology, modelling protocol and classification of hydrological model codes. In Distributed hydrological modelling (pp. 17-39): Springer.
Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198(1-4), 69-97.
Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., & Troldborg, L. (2012). Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Advances in Water Resources, 36, 36-50.
Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460(7258), 999-1002.
Rojas, R., Batelaan, O., Feyen, L., & Dassargues, A. (2010). Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal–North Chile.
Rojas, R., Feyen, L., & Dassargues, A. (2008). Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resources Research, 44(12).
Selroos, J.-O., Walker, D. D., Ström, A., Gylling, B., & Follin, S. (2002). Comparison of alternative modelling approaches for groundwater flow in fractured rock. Journal of Hydrology, 257(1-4), 174-188.
Sevionovic, S. P. (1997). Risk in sustainable water resources management. Paper presented at the proceedings of Rabat Symposium ‘Sustainable Water Resources Under Increasing Uncertainty. IAHS Publ.
Shiklomanov, I. A., & Rodda, J. C. (2004). World water resources at the beginning of the twenty-first century: Cambridge University Press.
SHU, L.-c., WANG, M.-m., LIU, R.-g., & CHEN, G.-h. (2007). Sensitivity analysis of parameters in numerical simulation of groundwater [J]. Journal of Hohai University (Natural Sciences), 5.
Tatli, H., & Türkeş, M. (2011). Empirical orthogonal function analysis of the Palmer drought indices. Agricultural and Forest Meteorology, 151(7), 981-991.
Ting, C. S., Zhou, Y., Vries, J. d., & Simmers, I. (1998). Development of a preliminary ground water flow model for water resources management in the Pingtung Plain, Taiwan. Groundwater, 36(1), 20-36.
Troldborg, L., Refsgaard, J. C., Jensen, K. H., & Engesgaard, P. (2007). The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system. Hydrogeology Journal, 15(5), 843-860.
Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., & Bierkens, M. F. (2010). Global depletion of groundwater resources. Geophysical research letters, 37(20).
Wang, W.-H. (2020). 探討颱風特性於農損及坡地災害遙測影像辨識之研究. National Central University,
Wu, J., & Zeng, X. (2013). Review of the uncertainty analysis of groundwater numerical simulation. Chinese Science Bulletin, 58(25), 3044-3052.
Yu, H.-L., & Chu, H.-J. (2010). Understanding space–time patterns of groundwater system by empirical orthogonal functions: a case study in the Choshui River alluvial fan, Taiwan. Journal of Hydrology, 381(3-4), 239-247.
Yu, H.-L., & Lin, Y.-C. (2015). Analysis of space–time non-stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods. Journal of Hydrology, 525, 585-597.
Yue, W., Meng, K., Hou, K., Zuo, R., Zhang, B.-T., & Wang, G. (2020). Evaluating climate and irrigation effects on spatiotemporal variabilities of regional groundwater in an arid area using EOFs. Science of The Total Environment, 709, 136147.
Zektser, I. S., & Everett, L. G. (2000). Groundwater and the environment: applications for the global community: CRC Press.
Zhang, Y., Wu, C., Hu, B. X., Yeh, T.-C. J., Hao, Y., & Lv, W. (2019). Fine characterization of the effects of aquifer heterogeneity on solute transport: A numerical sandbox experiment. Water, 11(11), 2295.
王士榮. (2017). 嘉義高雄地區地下水污染傳輸之模擬與分析研究期末報告. Retrieved from 財團法人中興工程顧問社:
王士榮, 李馨慈, 林宏奕, 徐國錦, 張閔翔, 黃智昭, & 李振誥. (2012). 大甲溪流域中上游地區地下水出水量評估. 農業工程學報, 58(4), 1-14.
石同生, 盧詩丁, 李元希, 林燕慧, 劉彥求, 黃存慧, . . . 林啟文. (2002). 梅山斷層, 經濟部中央地質調查所施政計畫報告-活動斷層調查報告: http://cgsweb. moeacgs. gov. tw/result/Fault/web/activefault/22-2. htm.
何春蓀. (1986). 臺灣地質概論, 經濟部中央地質調查所, 共 164 頁.
吳瑞賢. (2001). 工程水文學, 台北: 科技圖書股份有限公司.
李心惟. (2014). 結合 HEC-RAS 與 MODFLOW 於濁水溪沖積扇地下水與地層下陷模擬. 成功大學資源工程學系學位論文, 1-96.
李光敦. (2005). 水文學: 五南圖書出版股份有限公司.
林朝棨. (1957). 臺灣地形: 臺灣省文獻委員會.
林聖婷. (2012). 濁水溪沖積扇補注量與抽水量空間分佈模式建立. 臺灣大學土木工程學研究所學位論文, 1-77.
張弼舜, & 張良正. (2010). 應用專家系統於穩健型地下水參數檢定模式之發展.
陳文山, 石瑞銓, 楊小青, 楊志成, 葉明官, 李龍昇, . . . 張徽正. (2003). 梅山斷層的構造特性與古地震研究. 活動斷層與地震地質專輯 (一), 經濟部中央地質調查所特刊(14), 137-146.
陳文山, 李錫堤, 石瑞銓, 楊小青, 楊志成, 顔一勤, . . . 侯進雄. (2004). 新化斷層的構造特性與古地震研究. In: 經濟部中央地質調查所特刊.
陳文山, 俞何興, 俞震甫, 鍾孫霖, 林正洪, 林啟文, & 王國龍. (2016). 臺灣地質概論. 臺北市: 中華民國地質學會, 共, 204.
陳文山, 陳于高, 劉聰桂, 黃能偉, 林清正, 宋時驊, & 李昆傑. (2000). 921 集集地震的地震斷層特性. Paper presented at the 中國地質學會八十九年度年會.
陳文山, 楊志成, 石瑞銓, 楊小青, 顏一勤, 陳于高, . . . 李元希. (2003). 九芎坑斷層的斷層特性與活動性研究. 經濟部中央地質調查所 特刊(14), 113-128.
陳文山, 楊志成, 楊小青, 吳樂群, 林啟文, 張徽正, . . . 石同生. (2004). 從構造地形探討嘉南地區活動構造及構造分區. 經濟部中央地質調查所彙刊, 17 民 93.09, 53-77.
陳文山, 葉明官, 楊志成, 石瑞銓, 林啟文, & 侯進雄. (2006). 梅山斷層的構造特性. In (pp. 135-151): 經濟部中央地質調查所彙勘(19).
陳尉平. (2006). 應用河川流量歷線推估台灣地下水補注量. 成功大學資源工程學系學位論文, 1-171.
陸挽中, 陳瑞娥, & 黃智昭. (2015). 嘉南平原北段之水文地質分析. In: 經濟部中央地質調查所
經濟部水利署. (2016a). 地下水補注地質敏感區劃定計畫書-G0006嘉南平原. Retrieved from
經濟部水利署. (2016b). 臺灣地區乾旱時期地下水備援用水評估系統建置: 經濟部水利署.
葉明官, 陳文山, 石文卿, & 陳若玲. (2000). 從震測剖面來看梅山斷層的特性. 中國地質學會八十九年度年會, 第 106-108 頁.
鄭世楠, 張建興, 吳健富, 葉永田, & 辛在勤. (1997). 日據時期台灣地區地震資料之整理 (D), 中央研究院地球科學研究所與交通部中央氣象局. IESCRg7-004,799-1,352.
指導教授 林遠見(Yuan-Chien Lin) 審核日期 2021-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明