博碩士論文 108322612 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.145.61.82
姓名 Joni Fitra(Joni Fitra)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Landslide risk analysis subject to geological uncertainty- a viewpoint from a simplified model)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣夏季多雨且處於地震頻繁區域,山區易有土石流、山崩等災害事件,對於台灣來說,順向坡的災害更是常見,一旦坡趾受到施工或是河流沖蝕而見光,容易因外在因素影響而向下坍滑,造成坡趾處保全對象的嚴重損失及傷亡。對於大地工程或工程地質相關災害的分析來說,其影響因子除了大地工程材料的一般物理及力學性質外,地質模型或地質參數也是屬於相當關鍵的因子,對於順向坡滑動,其中較為關鍵的地質參數包括了地下水位的分布,以及潛在滑動面的位態。近年來,大地工程或工程地質的分析愈來愈強調考慮參數變異性以及風險的重要性,而相關研究亦指出地質參數或模型不確定性對於工程地質災害的風險評估有其必要性。因此,本研究以簡化順向坡為基本模型,考慮潛在滑動面傾角以及滑動塊體節理分布不確定性,探討順向坡滑動的機率以及其崩滑塊體運移距離之機率分布,了解地質模型不確定性對於順向坡滑動及崩滑之風險。
本研究基本模型中的潛在滑動面傾角來源,主要參考Yeh et al.(2021)所探討的台灣國道三號順向坡滑動案例,滑動面傾角來源主要有四大類,共8項,四大類包含臨近案例坡地之地質圖、災前現場量測值、災後滑動面現場量測值以及災前光達推估資料,每一類資料均有其滑動面之走向及傾角,因此各類資料再依本案例滑動面之傾向投影至滑動面,而得到滑動面上之傾角,並利用蒐集而得之資料計算其統計參數,以利後續蒙地卡羅分析。對於滑動塊體之節理分布來說,本研究將滑動塊體內部之節理分為兩類,分別為與滑動面平行之層面以及與走向節理平行之高角度節理兩組節理,由於缺乏適當之節理分布資料,因此本研究假設兩組節理之統計參數,並建立分離元素模型,再以點估計法計算其塊體崩落運移距離之機率分布。
研究結果顯示,以極限平衡法再搭配蒙地卡羅分析所得的滑動機率,與傾角來源有極大的關連性,光達資料所推估之滑動面傾角為較大範圍之平均,因此其變異性較低,平均值也較小,因此其對應之破壞機率最低(16.9),相反的,由地質圖所推估之傾角,其平均值與變異程度均較高,因此對應之破壞機率為最高(78%)。由運移距離的分析看來,若以光達資料所推估之傾角來進行分析,其塊體運移距離為最短,到達距離坡趾50公尺之機率為17%,而200公尺之機率為0%,研究結果中節理分布對於塊體之運移距離較無法看出整體趨勢。
由以上結果可以看出,順向坡的分析及設計,受到地質模型不確定之影響相當大,若以地質圖之傾角來設計,則可以了解在將分析的破壞機率降到一定可接受機率(如10-3)以下,則以地質圖傾角來設計所需之工程成本,會比以光達推估傾角所需之工程成本要高得多,說明了在工程中考慮地質模型不確定性的重要性。
摘要(英) Landslide is the primary driver of the denudational process and sediment source dominantly onsite. Landslides are one of the most disastrous effects in Taiwan; groundwater or flood erosion is highly attributed to the landslide. The slope dip angle and water-induced slope cause increased driving force and decreased resisting force, causing a slope landslide. This condition generally affects slope stability to the understanding effect of dip angle attributed to the landslide. In this study, we attempt to consider the uncertainty of the dip angle in slope stability analysis. The dip angles employed in this study were based on Highway no. 3 sliding events in Taiwan. Four different measurement sources, i.e., Central Geological Survey (C.G.S., Taiwan), Compass measurement before the sliding event, Surface measurement after the event, and LiDAR-derived data, were employed in this study.
Four methods were employed to analyze attributed dip angle to the landslide, i.e., Limit Equilibrium, monte Carlo simulation, Point estimate method (P.E.M), and 3DEC software simulation. In this research, the Monte Carlo simulation was used to quantify the effect of the geological uncertainty. Various dip angles (with mean and standard deviation) were employed to generate 100000 dip angle samples.
The limit equilibrium was used to quantify the safety factor of each measurement dip angle in the condition of no cohesion, no anchor, and no water pressure effect. The point estimate method was used to predict the probability of displacement length, displacement width, and debris volume. The point estimates method also predicts the risk of displacement length to the building in two scenarios applied. 3DEC software was used to simulate the simplified model 100m by 100m by 100m were cut off by dip angle of each measurement and various joint spacing.
Limit equilibrium results show that the LiDAR measurement source provides the highest safety factor of the slope due to the lowest dip angle. Monte Carlo simulation results show LiDAR Measurement Source provides the lowest failure probability of 16.9%, and Central Geological Survey (C.G.S., Taiwan) Measurement provides the highest failure probability of 78%. 3DEC simulation shows the effect of damping factor, dip angle, and joint spacing on the displacement length, displacement width, debris volume, and mechanical time of debris to stabilize. The point estimate method (PEM) shows that the LiDAR measurement source provides the lowest probability of 17% of the debris reaching the building at a distance of 50 meters and probability 0% of the building at a distance of 200 meters for all measurement methods.
Finally, the risk might be unacceptable for the building at a distance of 50 meters from the slope toe because probability has not reached 0% and expense much money. The risk might be acceptable for the building′s minimum distance of 150meters. Further, the measured dip angles were converted to the projected dip angle based on the plane′s strike. Therefore, based on the engineering design concept, if the design is performed using the C.G.S. data, the engineering design must be very conservative compared to the design using the LiDAR data
關鍵字(中) ★ 地質模型不確定性
★ 邊坡穩定
★ 滑動面位態
★ 節理分布
★ 風險
關鍵字(英) ★ Geological model uncertainty
★ Slope stability
★ Plane orientation
★ Joint distributions
論文目次 Chinese Abstract i
Abstract iii
Acknowledgment iv
Table Of Content v
List Of Figure vii
List Of Table x
Chapter 1 Introduction 1
1.1. Background 1
1.2. Research objective 2
1.3. Outline 3
Chapter 2 Literature Review 4
2.1. Introducing Model Uncertainty 4
2.2. Landslide Analysis 5
Chapter 3 Methodology 8
3.1. Importance of geological model uncertainty: dip angle in this study 8
3.2 Importance of geological model uncertainty: joint spacing in the rock 10
3.3. Using Stereonet to analyze the stability of rock slopes 11
3.4. Limit Equilibrium 14
3.5. Introduction of 3DECTM 17
3.5.1 Model 17
3.5.2 Material Properties 21
3.5.3 Damping 22
3.6. Monte Carlo Simulation 24
3.7. Point Estimate Method (P.E.M.) 25
3.8. Sources of Data 28
Chapter 4 Probabilistic analysis result and discussion - slope stability 30
4.1. Limit Equilibrium Result 30
4.2. Monte Carlo Simulation Result 31
4.2.1 Central Geological Survey (C.G.S Taiwan.) 31
4.2.2 Compass measurement in the field 32
4.2.3 Surface measurement of the sliding plane after the event 33
4.2.4 LiDAR measurement 34
Chapter 5 Risk analysis of debris run-out using point estimate method result 37
5.1. 3DEC Simulation Results 37
5.1.1 Damping Factor Effect 37
5.1.2. Dip angle effect 41
5.1.3. Joint spacing effect 43
5.2. Point Estimate Method 48
5.2.1 Central Geological Survey (C.G.S.) measurement 48
5.2.2 Compass measurement 53
5.2.3 Surface Measurement 57
5.2.4 Light Detection and Ranging (LiDAR) measurement 62
5.3. Risk Analysis 67
Chapter 6 Conclusion and Discussion 74
6.1 Discussion 74
6.2 Conclusion 76
References 78
APPENDIX A List of Acronyms 82
APPENDIX B 3DEC Simulation Results 83
APPENDIX C Thesis Defense Question 88
參考文獻 Ang, A.H.S., Tang, W.H., 1984. Probability Concepts in Engineering Planning and Design. Decision, Risk, and Reliability. Vol. 2 Wiley, New York.
Bardossy, G., Fodor, J., 2001. Traditional and new ways to handle uncertainty in geology. Nat. Resour. Res. 10 (3), 179–187.
Broeckx, J., Rossi, M., Lijnen, K., Campforts, B., Poesen, J., & Vanmaercke, M. 2020. Landslide mobilization rates: A global analysis and model. Earth-Science Reviews, 201, 102972. https://doi.org/10.1016/j.earscirev.2019.102972
Chen, L.-K., Chen, S.-C., & Ke, M.-C. 2015. Investigation of the Freeway No. 3 Landslide in Taiwan. In G. Lollino, D. Giordan, G. B. Crosta, J. Corominas, R. Azzam, J. Wasowski, & N. Sciarra (Eds.), Engineering Geology for Society and Territory—Volume 2 (pp. 2093–2096). Springer International Publishing. https://doi.org/10.1007/978-3-319-09057-3_374
Chen, Z., Du, J., Yan, J., Sun, P., Li, K., & Li, Y. 2019. Point estimation method: Validation, efficiency improvement, and application to embankment slope stability reliability analysis. Engineering Geology, 263(January),105232.https://doi.org/10.1016/j.enggeo.2019.105232
Chowdhury, R.N., 1984. Recent developments in landslide studies: probabilistic methodsstate- of-art-report. Proceedings of the 4th International Symposium on Landslides 209–228.
Christian, J.T., Baecher, G.B., 1999. Point-estimate method as numerical quadrature. J. Geotech. Geoenviron. 125, 779–786.
Christian, J.T., 2004. Geotechnical engineering reliability: how well do we know what we are doing? J. Geotech. Geoenviron. Eng. 130 (10), 985–1003.
Crosby, W. O., 1882, On the classification and origin of joint structures: Proceedings of the Boston Society of Natural History, v. 22, p. 72-85.
Cundall, P. A. 1987. Distinct Element Models of Rock and Soil Structure, in Analytical and Computational Methods in Engineering Rock Mechanics, Chapter 4, pp. 129-163. E. T. Brown, ed. London: George Allen and Unwin.
Duncan, J. M. 1999. The use of back analysis to reduce slope failure risk: The seventh annual Arthur Casagrande memorial lecture. Civ. Engrg. Pract., J. Boston Soc. of Civ. Engrs. Sect., ASCE, Vol. 14(1).
Dyer, J. R., 1983, Jointing in sandstones, Arches National Park, Utah [Ph.D. thesis]: Stanford, California, Stanford University, 202 p.
Fenton, G. A., & Griffiths, D. V. (2008). Risk Assessment in Geotechnical Engineering. In Risk Assessment in Geotechnical Engineering. https://doi.org/10.1002/9780470284704
Gilbert, R.B., Tang, W.H., 1995. Model uncertainty in offshore geotechnical reliability. In: Proc. 27th Offshore Technology Conf., Society of Petroleum Engineers, Richardson, Texas, USA, pp. 557–567.
Goodman, R.E. 1989. Introduction to Rock Mechanics. Wiley, New York.
Hart, R., Cundall, P. A., & Lemos, J. 1988. Formulation of a three-dimensional distinct element model-Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences And, 25(3), 117–125. https://doi.org/10.1016/0148-9062(88)92294-2
Hasofer, A.M., Lind, N.C., 1974. Exact and invariant second-moment code format. J .Eng. Mech. Div. 100, 111–121.
Hobbs, D. W., 1967, The formation of tension joints in sedimentary rocks: An explanation: Geological Magazine, v. 104, p. 550-556.
Hodgson, R. A., 1961, Classification of structures on joint surfaces: American Journal of Science, v. 259, p. 493-502.
Hodgson, R. A., 1961, Regional study of jointing in Comb Ridge-Navajo Mountain area, Arizona and Utah: American Association of Petroleum Geologists Bulletin, v. 45, p. 1-38
Hoek E, Bray J. 1981. Rock slope engineering. 3rd ed. London: Institution of Mining and Metallurgy;
Hsiao CY, Hsieh PS, Chi SY. 2011. Preliminary study using unconventional photogrammetry to evaluate the earthwork volume – a case study of the landslide occurred on the Cidu Section of Formosan Freeway. J Chin Soil Water Conserv;42(2):120–30 [in Chinese].
Itasca Consulting Group Inc. 2016. Three Dimensional Distinct Element Code (3DEC) – Theoretical Manual , Version 5.2. Minneapolis: ICG.
Juang, C. H., Zhang, J., Shen, M., & Hu, J. 2019. Probabilistic methods for unified treatment of geotechnical and geological uncertainties in a geotechnical analysis. Engineering Geology, 249, 148–161. https://doi.org/10.1016/j.enggeo.2018.12.010
Juang, C.H., Yang, S.H., Yuan, H., Khor, E.H., 2004. Characterization of the uncertainty of the Robertson and Wride model for liquefaction potential evaluation. Soil Dyn. Earthq. Eng. 24 (9–10), 771–780.
Juang, C.H., Schuster, M.J., Ou, C.Y., Phoon, K.K., 2011. Fully probabilistic framework for evaluating excavation-induced building damage potential. J. Geotech. Geoenviron. Eng. 137 (2), 130–139.
Keaton, J.R., 2013. Engineering geology: fundamental input or random variable? In: Proc.Geo-Congress March 3–7 2013, pp. 232–253 San Diego, California, USA.
Keaton, J.R., 2014. A suggested geologic model complexity rating system. In: Lollino, G., Giordan, D., Thuro, K., Carranza-Torres, C., Wu, F., Marinos, P., Delgado, C. (Eds.),Engineering Geology for Society and Territory: Proceedings of XII IAEG Congress. 6. Applied Geology for Major Engineering Projects, Springer International PublishingSwitzerland, pp. 363–366 Torino, Italy.
Keaton, J.R., Ponnaboyina, H., 2014. Selection of geotechnical parameters using the statistics of small samples. In: Abu-Farsakh, M., Yu, X., Hoyos, L.R. (Eds.), Geo-Characterization and Modeling for Sustainability. Vol. 234. ASCE Geo-Institute, Geotechnical Special Publication, pp. 1532–1541.
Kim, B. C., Chen, J., & Kim, J. Y. 2020. Relation between crack density and acoustic nonlinearity in thermally damaged sandstone. International Journal of Rock Mechanics and Mining Sciences, 125(September 2018), 104171. https://doi.org/10.1016/j.ijrmms.2019.104171
Knill, J., 2003. Core values: the first Hans-Cloos lecture. Bull. Eng. Geol. Environ. 62 (1), 1–34.
Kottegoda, N.T., Rosso, R., 2008. Applied Statistics for Civil and Environmental Engineers. Blackwell, Malden, MA.
Kulhawy, F.H., Phoon, K.K., 2002. Observations on geotechnical reliability-based design development in North America. In: Honjo, Y., Kusakabe, O., Matsui, K., Kouda, M., Pokharel, G. (Eds.), Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance Based Design. A.A. Balkema, Tokyo, Japan, pp. 31–48.
Lacasse, S., Nadim, F., 1994. Reliability issues and future challenges in geotechnical engineering for offshore structures., in: Proc 7th Int. Conf. on Behaviour of Offshore Structures. MIT Press, Cambridge, Massachusetts, USA, Pp.9–38.
Lachenbruch, A. H.1962. Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost; Geological Society of America Special Paper 70,69 p.
Ladeira, F. L„ and Price, N. J., 1981, Relationship between fracture spacing and bed thickness: Journal of Structural Geology, v. 3, p. 179-183.
La Pointe, P. R., and Hudson, J. A., 1985, Characterization and interpretation of rock mass joint patterns: Geological Society of America Special Paper 199,37 p.
Li, K. S. 1992. ‘‘Point-estimate method for calculating statistical moments.’’ J. of Engrg. Mech., ASCE, 118(7), 1506–1511.
Lind, N. C. 1983. ‘‘Modelling uncertainty in discrete dynamical systems.’’ Appl. Math. Modelling, 7(3), 146–152.
Melchers, R.E., Beck, A.T., 2018. Structural Reliability Analysis and Prediction. John Wiley & Sons.
Morgenstern, N.R., 2000. Common ground. In: GeoEng2000: An International Conference on Geotechnical and Geological Engineering. Technomic Publishing Co, Lancaster, Pennsylvania, USA, pp. 1–20.
Nguyen, V.U., Chowdhury, R.N., 1984. Probabilistic study of spoil pile stability in strip coal mines—two techniques compared. Int. J. Rock Mech. Min. Sci. Geomech. 303–312.
Otter, J. R. H., A. C. Cassell and R. E. Hobbs. 1966. Dynamic Relaxation (Paper No. 6986), Proc. Instn. Civ. Engrs., 35, 633-656 .
Parry, S., Baynes, F.J., Culshaw, M.G., Eggers, M., Keaton, J.F., Lentfer, K., Novotny, J., Paul, D., 2014. Engineering geological models: an introduction: IAEG commission 25. B. Eng. Geol. Environ. 73 (3), 689–706.
Phoon, K.K., Kulhawy, F.H., 1999. Characterization of geotechnical variability. Can.Geotech. J. 36 (4), 612–624.
Phoon, K.K., Kulhawy, F.H. 2005. Characterisation of model uncertainties for laterally loaded rigid drilled shafts. Géotechnique 55 (1), 45–54.
Pollard, D. D., & Aydin, A. 1990. Progress in understanding jointing over the past century. Special Paper of the Geological Society of America, 253, 313–336. https://doi.org/10.1130/SPE253-p313C, Y. (1992). Principles of risk analysis. In International Journal of Risk and Safety in Medicine (Vol. 3, Issues 5–6). https://doi.org/10.3233/JRS-1992-35-610
Ragan, D. 2009. Structural Geology: An Introduction to Geometrical Techniques (4th ed.). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511816109
Rosenblueth, E., 1975. Point estimates for probability moments. Proc. Natl. Acad. Sci. 3812–3814.
Rosenblueth, E. 1981. ‘‘Two-point estimates in probabilities.’’ Appl. Math. Modelling, 5(2), 329–335.
Rowland, S. M., Duebendorfer, E. M., & Schiefelbein, I. M. 2007. Structural analysis and synthesis: A laboratory course in structural geology (3rd ed). Blackwell Pub
Sanetra, U. 2005. The change of internal friction angle of intact and jointed rock on different depth. Proceedings of Mining Workshops 2005, Polska Akademia Nauk, Wydawnictwo IGSMiE PAN. Kraków. 481–492, (in Polish).
Sullivan, T.D., 2010. The geological model. In: Williams, A.L., Pinches, G.M., Chin, C.Y., McMorran, T.J., Massey, C.I. (Eds.), Geologically Active: Proc. the 11th Congress of the International Association for Engineering Geology and the Environment. 2010. CRC Press, Auckland, New Zealand, London, pp. 155–170 Sep 5–10.
TGS, 2011. The investigation report of the landslide at Taiwan highway No.3, Ministry of Transportation and Communications investigation report. Taiwan Geotechnical Society, Taipei. (in Chinese)
Turner AK, Schuster RL. 1996. Landslides — investigation, and mitigation: national research council. Transportation research board special report 247. Washington (DC): National Academy Press.
Wang, L., Hwang, J.H., Luo, Z., Juang, C.H., Xiao, J., 2013. Probabilistic back analysis of slope failure – A case study in Taiwan. Comput. Geotech. 51, 12–23.
Wang, L., Ravichandran, N., Juang, C.H., 2012. Bayesian updating of KJHH model for prediction of maximum ground settlement in braced excavations using centrifuge data. Comput. Geotech. 44, 1–8.
Wolff, T. F. 1996. ‘Probabilistic slope stability in theory and practice. Uncertainty in the Geologic Environment, ASCE, New York, 419–433.
Wong, F. S. 1985. First-order, second-moment methods. Comp. and Struct., 20(4), 779–791.
Wyllie DC, Mah CW. 2004. Rock slope engineering. 4th Ed. London: Spon Press.
Yeh, C.-H., Chan, Y.-C., Chang, K.-J., Lin, M.-L., & Hsieh, Y.-C. 2014. Derivation of Strike and Dip in Sedimentary Terrain Using 3D Image Interpretation Based on Airborne LiDAR Data. Terrestrial, Atmospheric and Oceanic Sciences, 25(6), 775. https://doi.org/10.3319/TAO.2014.07.02.01(TT)
Yeh, C.-H., Lin, M.-L., Chan, Y.-C., Chang, K.-J., & Hsieh, Y.-C. 2017. Dip-slope mapping of sedimentary terrain using polygon auto-tracing and airborne LiDAR topograph data. Engineering Geology, 222, 236–249. https://doi.org/10.1016/j.enggeo.2017.04.009
Yeh, C.-H., Dong, J.-J., Khoshnevisan, S., Juang, C. H., Huang, W.-C., & Lu, Y.-C. 2021. The role of the geological uncertainty in a geotechnical design – A retrospective view of Freeway No. 3 Landslide in Northern Taiwan. Engineering Geology, 291, 106233. https://doi.org/10.1016/j.enggeo.2021.106233
Yoe, C. 1992. Principles of risk analysis. In International Journal of Risk and Safety in Medicine (Vol. 3, Issues 5–6). https://doi.org/10.3233/JRS-1992-35-610
Zeng, Y., Kang, X., Xie, X., Tang, E., & Liu, C. 2017. Studies on seepage law considering stratigraph dips. Petroleum, 3(4), 470–475. https://doi.org/10.1016/j.petlm.2017.05.001
Zhang, J., Zhang, L.M., Tang, W.H., 2009. Bayesian framework for characterizing geotechnical model uncertainty. J. Geotech. Geoenviron. Eng. 135 (7), 932–940.
Zhang, X., Tsang, L. L. H., Wang, Y., & Zhao, B. 2009. Petrologic composition model of the upper crust in Bohai Bay basin, China, based on Lamé impedances. Applied Geophysics, 6(4), 327–336. https://doi.org/10.1007/s11770-009-0039-5
指導教授 黃文昭 Yusep Muslih Purwana(Wen-Chao Huang Yusep Muslih Purwana) 審核日期 2022-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明