博碩士論文 108323009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.149.235.175
姓名 周聖勳(Sheng-Hsun Chou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 離岸風力機塔架之開機負載及失效評估分析
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對NREL 5MW OWT離岸風力機塔架進行開機負載及失效評估分析。選擇IEC 61400-3規範中DLC 3.2與3.3之開機工況,根據DNVGL-ST-0437規範設定風況與操作條件之耦合情況,並配合台灣西部沿岸之海洋參數進行模擬。 先利用GH-Bladed軟體進行風力機塔架負載分析,然後將負載轉換輸入至ANSYS Workbench進行應力分析,最後在塔架環銲與縱銲處設置半橢圓裂縫,並採用BS 7910規範進行塔架失效評估分析。
研究結果顯示在開機與極端運轉陣風耦合期間,塔頂在風力機轉軸方向會產生極大的軸向力。在開機與極端風向變化耦合時,塔頂之軸向力會降低,但側向力會因風向改變而提高。在額定風速(11.4 m/s)時,塔架在沒有裂縫下承受開機與陣風耦合情況,安全係數為1.62,符合IEC 61400-3規範建議值。在塔架環銲裂縫深度為20 mm、裂縫長度為50 mm時,將有塔架發生崩潰之危險,應立即執行維修程序。塔架縱銲裂縫的最大應力強度因子皆非常小,並不會發生嚴重損害與倒塌。對於塔架環銲裂縫而言,裂縫深度每增加1 mm,應力強度因子之最大提升量為1.20 MPa√m,而裂縫長度每增加1 mm,其最大提升量為0.34 MPa√m,可知裂縫深度的增加較裂縫長度的增加更容易使塔架發生斷裂情況。
摘要(英) In this study, start-up load and failure assessment of NREL 5MW OWT offshore wind turbine tower were analyzed. Start-up conditions of DLC 3.2 and 3.3 in IEC 61400-3 standard were selected. Coupling conditions of wind and operating conditions set in DNVGL-ST-0437 standard and the ocean parameters of Taiwan west coast were adopted for simulation. Firstly, the load analysis of wind turbine tower is carried out by using GH-Bladed software, and then the load conversion is input to ANSYS Workbench for stress analysis. Finally, semi-elliptical cracks were set at the circumferential and longitudinal welds of the tower, and the failure assessment analysis of the tower was carried out by BS 7910.
The results show that the top of the tower produces a great axial force in the direction of the rotating axis of the wind turbine during the start-up and the extreme operating gust coupling period. When start-up coupled with the extreme wind direction change, the axial force at the top of the tower will decrease, but the lateral force will increase due to the wind direction change. At the rated wind speed (11.4 m/s), the tower withstands the start-up and gust coupling condition without cracks, and the safety factor is 1.62, which is in line with the recommended value of IEC 61400-3 standard. When the circumferential welding crack depth of the tower is 20 mm and the crack length is 50 mm, the tower will be in danger of collapse, and maintenance procedures should be carried out immediately. The maximum stress intensity factor of the longitudinal welding cracks of the tower is very small and will not cause serious damage and collapse. For the circumferential welding cracks of the tower, the maximum increase of stress intensity factor is 1.20 MPa√m with the increase of crack depth 1 mm, and 0.34 MPa√m with the increase of crack length 1 mm. It can be concluded that the increase of crack depth is more likely to cause the tower to fracture than the increase of crack length.
關鍵字(中) ★ 離岸風力機
★ 開機負載
★ 半橢圓裂縫
★ 塔架失效評估
★ 安全係數
關鍵字(英) ★ Offshore Wind Turbine
★ Start Up Load
★ Semi-Elliptical Crack
★ Tower Failure Assessment
★ Safety Factor
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiii
符號說明 xv
第一章、緒論 1
1-1研究背景與動機 1
1-2研究目的 4
1-3離岸風力機簡介 5
1-3-1風力機原理 5
1-3-2離岸風力機機組構造 6
1-4文獻回顧 8
1-4-1離岸風力機之設計規定 8
1-4-2國內外風力機事故分析 8
1-4-3塔架負載及應力分析 10
1-4-4塔架銲道應力及應力強度因子分析 11
1-4-5金屬結構裂縫之失效評估 13
第二章、理論說明 16
2-1 GH-Bladed軟體說明 16
2-1-1 GH-Bladed軟體功能 16
2-1-2 GH-Bladed計算理論模型 16
2-2風力機外部條件 17
2-2-1風況條件 18
2-2-1-1風速分布 18
2-2-1-2十分鐘平均風速 18
2-2-1-3風切指數(Wind Shear Exponent) 19
2-2-1-4極端風-陣風 20
2-2-1-5極端風-風向變化 20
2-2-2海況條件 21
2-2-2-1波浪 21
2-2-2-2洋流 23
2-2-2-3潮汐水位 25
2-3離岸風力機負載 26
2-3-1慣性與重力負載 27
2-3-2氣動力負載 28
2-3-2-1葉片 28
2-3-2-2塔架 32
2-3-3水動力負載 33
2-4破壞力學 (Fracture Mechanics)簡介 34
2-4-1線彈性破壞力學 (Linear Elastic Fracture Mechanics, LEFM) 34
2-4-2彈塑性破壞力學 (Elastic Plastic Fracture Mechanics, EPFM) 37
2-5有限元素應力分析簡介 39
2-5-1前處理(Preprocessing) 39
2-5-2求解(Processing) 39
2-5-3後處理(Postprocessing) 39
第三章、研究方法 40
3-1離岸風力機型號與規格 41
3-2建構NREL 5MW OWT離岸風力機模型 45
3-2-1在GH-Bladed軟體建構NREL 5MW OWT模型 45
3-2-2在ANSYS軟體建構NREL 5MW OWT塔架模型 48
3-2-2-1 NREL 5MW OWT塔架模型設定 48
3-2-2-2 NREL 5MW OWT塔架法蘭模型 49
3-2-2-3 ANSYS網格設定 51
3-3模態分析 52
3-4操作條件與設計工況 52
3-4-1 NREL 5MW OWT設計工況 52
3-4-2 NREL 5MW OWT操作條件 56
3-5 GH-Bladed之輸出負載轉換為ANSYS分析之外力 56
3-6塔架裂縫分析 60
第四章、結果與討論 62
4-1 NREL 5MW OWT葉片與塔架模態分析 62
4-2設計工況對離岸風力機負載之影響 64
4-2-1開機與極端運轉陣風耦合之影響 67
4-2-2開機與極端風向變化耦合之影響 68
4-3 NREL 5MW OWT塔架應力分析 69
4-3-1 ANSYS塔架模型與負載轉換 70
4-3-2開機與極端運轉陣風耦合時之塔架應力 71
4-4塔架裂縫分析位置之選定 72
4-4-1環銲裂縫 73
4-4-2縱銲裂縫 74
4-5塔架裂縫之失效評估方法 75
4-5-1材料性質與破壞韌性 75
4-5-2失效評估曲線之選定 76
4-5-3裂縫參考應力 79
4-5-4裂縫失效評估 81
4-6裂縫幾何尺寸對塔架失效之影響 91
4-6-1裂縫形狀之影響 91
4-6-2裂縫深度之影響 93
4-6-3裂縫長度之影響 95
4-6-4塔架裂縫安全係數 99
4-6-5 BS 7910 Option 3失效評估曲線 101
第五章、結論與未來研究方向 103
5-1結論 103
5-2未來研究方向 104
參考文獻 105
附錄、塔架管壁膜應力與彎曲應力之計算 111
參考文獻 [1] “風力發電4年推動計畫” ,經濟部能源局,2017。
[2] “Global Wind Speed Rankings,” 4C Offshore, 2013.
[3] 網路資料:Caithness Windfarm Information Forum,取自
http://www.caithnesswindfarms.co.uk/AccidentStatistics.htm
[4] 網路資料:風力發電單一服務窗口,取自https://www.twtpo.org.tw/
[5] 呂學德、何無忌、呂威賢、胡哲魁、陳美蘭、連永順, “台灣離岸風力潛能與優選離岸區塊場址研究” ,中華民國第三十六屆電力工程研討會, 2015。
[6] “Wind Turbines - Part 3: Design Requirements for Offshore Wind Turbines,” IEC 61400-3, International Electrotechnical Commission, 2009.
[7] DNV GL, “Loads and site conditions for wind turbines,” DNVGL-ST-0437, 2016.
[8] “Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures,” BS 7910, British Standard Institution, 2013.
[9] 網路資料:維基百科。取自https://zh.wikipedia.org/wiki/%E9%A2%A8%E5%8A%9B%E7%99%BC%E9%9B%BB%E5%BB%A0
[10] 網路資料:Wind Energy Gets Serial,取自
https://www.theengineer.co.uk/wind-energy-gets-serial/
[11] “Wind Turbines - Part 1: Design Requirements,” IEC 61400-1, International Electrotechnical Commission, 2014.
[12] J. S. Chou, and W. T. Tu, “Failure Analysis and Risk Management of a Collapsed Large Wind Turbine Tower,” Engineering Failure Analysis, Vol. 18, pp. 295-313, 2011.
[13] X. Chen and J. Z. Xu, “Structural Failure Analysis of Wind Turbines Impacted by Super Typhoon Usagi,” Engineering Failure Analysis, Vol. 60, pp. 391–404, 2016.
[14] Z. Q. Li, S. J. Chen, H. Ma and T. Feng, “Design Defect of Wind Turbine Operating in Typhoon Activity Zone,” Engineering Failure Analysis, Vol. 27, pp. 165–172, 2013.
[15] T. Ishihara, A. Yamaguchi, K. Takahara, T. Mekaru and S. Matsuura, “An Analysis of Damaged Wind Turbines by Typhoon Maemi in 2003,” The Sixth Asia-Pacific Conference on Wind Engineering, Korea, pp. 1413–1428, 2005.
[16] Y. Ma, C. C. Baniotopoulos and M. V. Pedro, “Wind Turbine Tower Collapse Cases:A Historical Overview,” ICE Proceedings Structures and Buildings, Vol. 172, No. 8, pp. 547-555, 2018.
[17] 廖建榮、殷菘偉, “ACFM 離岸與海下結構檢測” ,Eddyfi Technologies,2020。
[18] 詹益梁, “風力發電塔架結構設計之探討” ,大漢技術學院土木工程與環境資源管理系,碩士論文,2014。
[19] 蔡育哲, “離岸風力機支撐結構行為” ,國立成功大學土木工程研究所,碩士論文,2016。
[20] 謝昆儒、曾瑞堂、張永源, “風力機之塔架負載分析” ,2010臺灣風能學術研討會,G6_02,2010。
[21] 洪浚傑, “離岸風力機負載分析與結構應力分析” ,國立中央大學碩士論文,2019。
[22] T. H. Gan, S. Soua, V. Dimlaye and K. Burnham, “Real-Time Monitoring System for Defects Detection in Wind Turbine Structures and Rotating Components,” 18th World Conference on Nondestructive Testing, 16-20, 2012.
[23] B. T. Moghaddam, A. M. Hamedany, J. Taylor, A. Mehmanparast, F. Brennan, C. M. Davies and K. Nikbin, “Structural Integrity Assessment of Floating Offshore Wind Turbine Support Structures,” Ocean Engineering, Vol. 208, No. 10, 107487, 2020.
[24] A. M. Mar, J. M. Adam, P. A. R. Felipe, J. d. C. D. Juan, “Wind Turbine Tower Collapse due to Flange Failure: FEM and DOE Analyses,” Engineering Failure Analysis, Vol. 104, pp. 932–949, 2019.
[25] B. C. Goo, J. W. Seo and S. Y. Yang, “Analysis of Welding Residual Stresses and Its Applications,” In Book: Finite Element Analysis, David Moratal, Published by Sciyo, 2010.
[26] 陳瑋承, “以有限元素法分析硬焊製程殘留應力” ,國立成功大學機械工程學系,碩士論文,2012。
[27] H. Deng, Z. Zhang, B. Yang, B. Du, S. Suo, X. Li and G. Xu, “Finite Element Analysis of Stress and Distortion for Welding Reinforced Structure of Angular Steel used for Power Tower under Load,” Journal of Physics: Conference Series, Vol. 1802, 022097, 2021.
[28] S. Cicero, R. Lacalle and R. Cicero, “Estimation of the Maximum Allowable Lack of Penetration Defects in Circumferential Butt Welds of Structural Tubular Towers,” Engineering Structures, Vol. 31, No. 9, pp. 2123-2131, 2009.
[29] W. S. Choi, N. K. Jung and J. S. Kim, “Failure Analysis of Cracked Pipe-type Transmission Tower,” 5th International Conference on Materials and Reliability, Korea, 2019.
[30] ASME, “Rules for Inservice Inspection of Nuclear Power Plant Components,” ASME BPVC Section XI, 2010.
[31] Q. A. Mai, J. D. Sørensen and P. Rigo, “Updating Failure Probability of a Welded Joint in Offshore Wind Turbine Substructures,” The 35th International Conference on Ocean, Offshore and Arctic Engineering Conference, South Korea, 2016.
[32] R. A. Ainsworth, M. Gintalas, M. K. Sahu, J. Chattopadhyay, B. K. Dutta, “Failure Assessment Diagram Assessments of Large-Scale Cracked Straight Pipes and Elbows,” SMiRT 23 Manchester, United Kingdom, 2015.
[33] M. Elsayed, A. E. Domiaty, A. H. I. Mourad, “Fracture Assessment of Axial Crack in Steel Pipe under Internal Pressure,” Procedia Engineering, Vol. 130, pp. 1273-1287, 2015.
[34] G. Pluvinage, C. Schmitt, “Probabilistic Approach of Safety Factor from Failure Assessment Diagram,” Numerical Methods for Reliability and Safety Assessment, pp. 549-577, 2014.
[35] DNV GL, and Garrad Hassan & Partners Ltd, “Bladed Theory Manual Version 4.8,” 2016.
[36] Y. K. Chen, and J. L. Chen, “Changhua Coastal Wind Farm Assessment by IEC61400,” Taiwan Power Research Institute, 2015.
[37] 網路資料: Particle Motion in Deep Water。取自https://www.scubageek.com/articles/wwwparticle.html
[38] T. Gentils, L. Wang, and A. Kolios, “Integrated Structural Optimisation of Offshore Wind Turbine Support Structures Based on Finite Element Analysis and Genetic Algorithm,” Applied Energy, Vol. 199, pp. 187-204, 2017.
[39] 唐榕崧, “複合材料葉片振動行為之研究” ,國立交通大學工學院專班精密與自動化工程學程,碩士論文,2009。
[40] 王晟桓、陳世雄, “基於葉素動量理論之水平軸風力發電機葉片空氣動力分析程序” ,2010臺灣風能學術研討會,G6_09,2010。
[41] DNV GL, “Design of Offshore Wind Turbine Structures,” DNV-OS-J101, 2014.
[42] 網路資料:維基百科。取自https://upload.wikimedia.org/wikipedia/commons/e/e7/Fracture_modes_v2.svg
[43] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. Of London, A221, pp. 163-197, 1921.
[44] G. R. Irwin, “Analysis of Stresses and Strains Near The End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Trans. Of ASME, Vol. 24, pp. 361-364, 1957.
[45] M. Chiesa, “Linking Advanced Fracture Models to Structural Analysis,” The Norwegian University of Science and Technology, Faculty of Mechanical Engineering, Department of applied mechanics, thermodynamics and fluiddynamics, 2001.
[46] G. P. Cherepanov, “Crack propagation in continuous media,” PMM Vol. 31, No. 3, pp. 476–488, 1967.
[47] J. R. Rice, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks,” Journal of Applied Mechanics, Vol. 35, pp. 379-386, 1968.
[48] 崔海平, “離岸風電場址風況、海洋參數及負載分析技術研究” ,金屬工業研究發展中心研究報告,2018。
[49] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden,” CO, Technical Report No. NREL/TP-500-38060, 2009.
[50] J. Jonkman and W. Musial, “Offshore code comparison collaboration (OC3) for IEA Wind Task 23 offshore wind technology and deployment,” National Renewable Energy Lab.(NREL), Golden, CO (United States), 2010.
[51] U. F. Gamiz, E. Zulueta, A. Boyano, J. A. R. Hernanz, and J. M. L. Guede, “Microtab Design and Implementation on a 5MW Wind Turbine,” Applied Sciences, Vol. 7, No. 6, pp. 536-553, 2017.
[52] S. Aasen, A. M. Page, K. S. Skau, and T. A Nygaard, “Effect of the Foundation Modelling on the Fatigue Lifetime of a Monopile-based Offshore Wind Turbine,” Wind Energy Science Discussions, Vol. 2, pp. 361-376, 2016.
[53] 施忠賢, “彰工II塔架結構計算書” ,施忠賢結構計師事務所,2010。
[54] 劉岳群, “離岸風力機塔架在正常發電下之疲勞分析” ,國立中央大學碩士論文,2020。
[55] DNV GL, and Garrad Hassan & Partners Ltd, “Bladed User Manual Version 4.8,” 2016.
[56] N. Stavridou, E. Efthymiou, and C. C. Baniotopoulos, “Welded connections of wind turbine towers under fatigue loading: Finite element analysis and comparative study,” American Journal of Engineering and Applied Sciences, Vol. 8, No. 4, pp. 489-503, 2015.
[57] 馬尼, “平板與薄管中半橢圓形裂縫疲勞成長的數值模擬” ,國立虎尾科技大學飛機工程系航空與電子科技碩士班,碩士論文,2019。
[58] 劉瑞弘, “風力機結構負載與共振模態之分析” ,工業技術研究院,2009。
[59] A. Hemmati, E. Oterkus, M. Khorasanchi, “Vibration Suppression of Offshore Wind Turbine Foundations using Tuned Liquid Column Dampers and Tuned Mass Dampers,” Ocean Engineering, Vol. 172, No. 1, pp. 286-295, 2019.
[60] AWS, “Structural Welding Code—Steel,” AWS D1.1/D1.1M, 2006.
[61] ASME, “Rules for Construction of Pressure Vessels,” ASME BPVC Section VIII, 2017.
[62] M. Sarraj, “The Behaviour of Steel Fin Plate Connections in Fire,” Department of Civil and Structural Engineering, University of Sheffield, 2007.
[63] 網路資料:MechaniCalc,取自
https://mechanicalc.com/reference/fracture-mechanics#LEFM
[64] C. Tipple, G. Thorwald, “Using the Failure Assessment Diagram Method with Fatigue Crack Growth to Determine Leak-before-Rupture,” SIMULIA Customer Conference, 2012.
[65] T. L. Anderson, “Fracture Mechanics, Fundamentals and Applications,” CRC Press, Taylor & Francis Group, Third Edition, 2005.
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2021-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明