博碩士論文 108323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:13.59.61.119
姓名 蔣劭威(Shao-Wei Chiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用濕式蝕刻後處理輔助之雷射藍寶石通孔研究
(Research on Laser Sapphire Vias Using Wet Etch Post-processing)
相關論文
★ 超快雷射薄石英晶圓微鑽孔研究★ 新型光學式自動聚焦顯微鏡的設計與其性能分析
★ 以田口法作微型動壓軸承最佳化設計與性能評價★ 開發以 ANSYS-Fluent 為架構之數值模擬法探 討行星式 MOCVD 反應腔體內之三維氣體流場
★ 使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證★ 雷射直寫技術應用於金屬網格軟性透明電極製作
★ 多功能崁入式金屬網格透明電極技術開發★ 結合雷射直寫與無電鍍技術應用於嵌入式金屬網格透明電極製作
★ 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極★ 以雷射碳化靜電紡絲碳奈米纖維製作超級電容電極
★ 航太用鋁合金板熱處理爐設施之研究★ 雷射加工機應用於微米元件轉印製程之研究
★ 連續與脈衝式近紅外光雷射對無鹼玻璃之改質與雙面微透鏡陣列加工★ 鋰離子電池模組之產熱模型建立與熱傳模擬分析
★ 脈衝雷射切割無定向矽鋼片及人工智能質量預測的實驗研究★ 雷射選擇圖案與無電鍍銅沉積應用於鋁矽酸玻璃基板之金屬化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 因為堅硬、易脆耐磨耗與高透光等特性,藍寶石的微精密加工一直很具有挑戰 性,超快脈衝式雷射被認為是很有潛力的工具之一。 本研 究以降低雷射藍寶石基板微 鑽孔之錐度為目的,嘗試一新雷射加工策略。載 板為厚度 170微米的藍寶石基板, 雷射則使用 300飛秒脈衝期、波長 1030奈米的飛秒雷射。此策略採用一雙週期、內外 雙迴圈之螺旋鑽法 :週期 一使用相對較低的雷射能量強度 (Energy intensity),先進行直 徑較大之外迴圈螺旋鑽,再實施直小的內;而週期 二,則提高能量強 度,重複週期 一之外、內雙迴圈螺旋鑽。實驗結果顯示,經過週期 一之螺旋鑽後,會 因為燒蝕過程複雜的光與材料相互作用,在基板內形成 似沙漏形狀之孔洞 ,孔壁週圍 材料結構與最後形狀,則由燒蝕過程複雜的光相互作用、在不同階段所成包括融化、再凝固之重鑄層與堆積殘渣。週期 二螺旋鑽可有效移除這些沉積物, 有效地降低圓孔錐度。最後,本研究使用 硫酸與磷混合溶液 ,以進一步改因雷射 能量在孔壁週圍引起的材質改變。藉此,本研究成功地實現徑 105 μm、錐角 0.5°、深寬比為 1.6之通孔
摘要(英) Micro-precision machining of sapphire has always been challenging because of its hard-ness, brittleness, wear resistance, and high transmission. Ultrashort-pulsed lasers are considered to be one of the most promising tools. In this study, a new laser sapphire drilling strategy was developed to reduce the taper of micro-drilling. The carrier is a sapphire substrate with a thick-ness of 200 microns, and the laser is a femtosecond laser with a pulse duration of 300 femto-seconds and a wavelength of 1030 nanometers. This scanning strategy adopts a double-cycle auger method with inner and outer double loops: Cycle I uses a relatively low laser energy intensity, first conducts the outer loop auger with a larger diameter, and then implements a smaller diameter auger. Inner loop auger; while Cycle II increases the energy intensity, repeat-ing the outer and inner double loop auger of Cycle I. The experimental results show that after one cycle of auger drilling, an hourglass-like hole will be formed in the substrate due to the complex interactions between light and material in the ablation process. The hole’s final struc-ture and shape are determined by the overall effects of light-sapphire interactions and the com-plex processes of the ablation and the deposits from the cooling and resolidification processes. The second cycle of the auger effectively removes these deposits, effectually reducing the taper of the round hole. Finally, this study used a mixed solution of sulfuric acid and phosphoric acid to further etch away the damage and stucuturelly altered layers around the hole wall. As a result, this study successfully realized through holes with a diameter of 105 μm, a taper angle of 0.5, and with an aspect ratio of 1.6.
關鍵字(中) ★ 藍寶石
★ 濕式蝕刻
★ 雷射鑽孔加工
★ 飛秒雷射
關鍵字(英) ★ sapphire
★ wet etching
★ laser drilling
★ femtosecond laser
論文目次 中文摘要 …………………………………………………………………………………………………… vi
Abstract…………………………………………………………………………………………………… vii
誌謝 ………………………………………………………………………………………………………… viii
大綱 ………………………………………………………………………………………………………… ix
圖目錄 ……………………………………………………………………………………………………… xii
表目錄 ……………………………………………………………………………………………………… xviii
chapter1 緒論 …………………………………………………………………………………………… - 1 -
1.1 前言 …………………………………………………………………………………………………… - 1 -
1.2 研究背景、動機與目的 ……………………………………………………………………………… - 5 -
Chapter2 文獻回顧與基礎理論 ………………………………………………………………………… - 7 -
2.1 藍寶石的加工方法 藍寶石的加工方法 ………………………………………………………………- 7 -
2.1.1 非傳統加工方 法介紹 …………………………………………………………………………… - 7 -
2.2 飛秒雷射加工 飛秒雷射加工 ………………………………………………………………………- 13 -
2.2.1 飛秒雷射特色及種類介紹 ……………………………………………………………………… - 13 -
2.2.2 飛秒雷射鑽孔透明材料原理與機制 …………………………………………………………… - 14 -
2.2.3 飛秒雷射鑽孔方法及策略 ……………………………………………………………………… - 18 -
2.2.4 雷射加工藍寶石特點分析 ……………………………………………………………………… - 19 -
2.3 藍寶石雷射加工結合濕式蝕刻製程 ……………………………………………………………… - 24 -
2.3.1 藍寶石濕式蝕刻原理與回顧 …………………………………………………………………… - 24 -
2.3.2 雷射加工結合濕式蝕刻特點 …………………………………………………………………… - 25 -
2.4 傳承與創新 傳承與創新 ………………………………………………………………………… - 27 -
Chapter3 實驗方法 ………………………………………………………………………………… … - 29 -
3.1 實驗流程 ………………………………………………………………………………………………- 29 -
3.2 實驗材料製備 ……………………………………………………………………………………… - 29 -
3.2.1 藍寶石晶圓 …………………………………………………………… …………………………- 29 -
3.2.2 藍寶石預清洗 …………………………………………………………………………………… - 30 -
3.3 複合式雷射鑽孔結 合濕式蝕刻 …………………………………………………………………… - 31 -
3.3.1 雷射設備相關規格介紹 ……………………………………………………………………………- 31 -
3.3.2 雷射掃描參數規劃 …………………………………………………………………………………- 32 -
3.3.3 濕式蝕刻 製程 ……………………………………………………………………………………- 34 -
3.4 表面特徵和性能量測設備介紹 ………………………………………………………………………- 35 -
3.5 實驗儀器設備清單 ………………………………………………………………………………… - 39 -
Chapter4 結果與討論 ……………………………………………………………………………… - 40 -
4.1 週期一雙迴圈飛秒雷射鑽孔徑及特徵的影響分析………………………………………………… - 40 -
4.1.1 雷射焦點位置對於鑽孔影響……………………………………………………………………… - 41 -
4.1.2 雷射能量對於鑽孔影響 ……………………………………………………………………………- 45 -
4.1.3 雷射掃描次數對於鑽孔影響……………………………………………………………………… - 47 -
4.2 週期二雙迴圈飛秒雷射鑽孔徑及特徵的影響分析………………………………………………… - 48 -
4.2.1 週期二雙迴圈飛秒雷射掃描策略對於通孔的影響 ………………………………………………- 49 -
4.3 藍寶石上之濕式蝕刻效果分析 藍寶石上之濕式蝕刻效果分析……………………………………- 51 -
4.3.1 蝕刻液的選擇……………………………………………………………………………………… - 52 -
4.4 雷射加工後形貌與品質探討 雷射加工後形貌與品質探討…………………………………………- 56 -
4.4.1 藍寶石八字成形因素分析 …………………………………………………………………………- 57 -
4.4.2 藍寶石八字型下半部及表面分析 …………………………………………………………………- 64 -
4.4.3 藍寶石沙漏狀孔洞分析…………………………………………………………………………… - 68 -
4.4.4 雷射加工藍寶石成果分析與探討………………………………………………………………… - 80 -
4.5 濕式蝕刻後處理輔助之雷射藍寶石通孔研究……………………………………………………… - 81 -
4.5.1 改善後週期一雙迴圈飛秒雷射鑽孔 ………………………………………………………………- 81 -
4.5.2 改善後週期二 雙迴圈飛秒雷射鑽孔………………………………………………………………- 84 -
4.5.3 濕式蝕刻改善雷射通孔品質 ………………………………………………………………………- 85 -
Chapter5 結論 …………………………………………………………………………………………… - 89 -
參考文獻 ……………………………………………………………………………………………………- 90 -
碩士論文口試委員問題集 ………………………………………………………………………………- 94 -
參考文獻 [1] H. J. Scheel, "Historical aspects of crystal growth technology," Journal of Crystal Growth January 2000, doi: 10.1016/S0022-0248(99)00780-0.
[2] L. A. L. Elena R. Dobrovinskaya , Valerian Pishchik, Sapphire Material, Manufacturing, Applications (Springer US). 2009.
[3] Y. Development. "6’’ and Below : Small Dimension Wafer Market Trends 2020." https://s3.i-micronews.com/uploads/2020/09/YDR2001.pdf (accessed.
[4] "Global High Purity Alumina Market – Industry Analysis and Forecast (2019-2026) " https://www.maximizemarketresearch.com/?s=Global+Sapphire+Substrates+Market (accessed 2019 August
[5] R. B. Pravin Pawar, Amaresh Kumar, "Machining processes of sapphire: An overview," International Journal of Modern Manufacturing Technologies, vol. Volume 9, Issue 1, Pages 47 - 72, 2017.
[6] 程陽. "下世代行動寬頻揭序幕 七大重點技術成就5G eMBB." https://www.2cm.com.tw/2cm/zh-tw/tech/AE3100A41F36440CB003988E4EE76CA3 (accessed.
[7] T. Baier, "High-throughput laser processing of sapphire and chemically strengthened glass," 2014.
[8] A. R. D. Ashkenasi, H. Varel, M. Wahmer, and E. E. B. Campbell, "Laser processing of sapphire with picosecond and subpicosecond pulses," 1997.
[9] E. Gu et al., "Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser," (in English), Thin Solid Films, vol. 453, pp. 462-466, Apr 1 2004, doi: 10.1016/j.tsf.2003.11.133.
[10] Y. Okamoto, T. Takekuni, and A. Okada, "Formation of Internal Modified Line with High Aspect Ratio in Sapphire by Sub-nanosecond Pulsed Fiber Laser," (in English), J Laser Micro Nanoen, vol. 9, no. 1, Mar 2014, doi: 10.2961/jlmn.2014.01.0011.
[11] "Femtosecond laser micromachining: A back-to-basics primer." https://www.industrial-lasers.com/cutting/article/16488567/femtosecond-laser-micromachining-a-backtobasics-primer (accessed 2012 Jun.
[12] s. choi, "The Conditional Analysis of Dispositions and the Intrinsic Dispositions Thesis," Philosophy and Phenomenological Research, 2009.
[13] A. N. Samant and N. B. Dahotre, "Laser machining of structural ceramics—A review," Journal of the European Ceramic Society, vol. 29, no. 6, pp. 969-993, 2009, doi: 10.1016/j.jeurceramsoc.2008.11.010.
[14] Z. H. S. X. Wang, J. Lu, and X. W. Ni, "Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes," Journal of Applied Physics, vol. 108, no. 3, 2010, doi: 10.1063/1.3466996.
[15] J. Z. Mahadi Hasan., Zhengyi Jiang, "A review of modern advancements in micro drilling techniques," Journal of Manufacturing Processes,, vol. 29, pp. Pages 343-375, 2017.
[16] Y. Fukuzawa, N. Mohri, T. Tani, and A. Muttamara, "Electrical discharge machining properties of noble crystals," Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 393-397, 2004, doi: 10.1016/j.jmatprotec.2003.12.028.
[17] J. Wang, P. Feng, J. Zhang, C. Zhang, and Z. Pei, "Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials," International Journal of Machine Tools and Manufacture, vol. 101, pp. 18-27, 2016, doi: 10.1016/j.ijmachtools.2015.10.005.
[18] Z. Liang, X. Wang, Y. Wu, L. Xie, Z. Liu, and W. Zhao, "An investigation on wear mechanism of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire," Journal of Materials Processing Technology, vol. 212, no. 4, pp. 868-876, 2012, doi: 10.1016/j.jmatprotec.2011.11.009.
[19] Y.-A. C. Bor Kai Wang, Aric Shorey, Garrett Piech, "Thin Glass Substrates Development and Integration For Through Glass Vias (TGV) With Copper (Cu) Interconnects," presented at the Packaging, Assembly and Circuits Technology Conference, 2012.
[20] C. K. Lee, Chien, C.H., Chiang, C.W., Shen, W.W., Fu, H.C., Lee, Y.C., Tsai, W.L., Wang, J.C., Chang, P.C., Zhan, C.J., Lin, Y.M., Cheng, R.S., Ko, C.T., Lo, W.C., & Lu, Y.J., "Investigation of the process for glass_interposer," presented at the Packaging, Assembly and Circuits Technology Conference, 2013.
[21] R. Ostholt, Ambrosius, N., & Krüger, R.A.,, "High speed through glass via manufacturing technology for interposer," presented at the Electronics System-Integration Conference, 2014.
[22] H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, "Metal particle manipulation by laser irradiation in borosilicate glass," Opt Express, vol. 18, no. 19, pp. 20313-20, Sep 13 2010, doi: 10.1364/OE.18.020313.
[23] E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Applied Physics Letters, vol. 71, no. 7, pp. 882-884, 1997, doi: 10.1063/1.119677.
[24] L. Capuano, R. Pohl, R. M. Tiggelaar, J. W. Berenschot, J. G. E. Gardeniers, and G. Romer, "Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etching," Opt Express, vol. 26, no. 22, pp. 29283-29295, Oct 29 2018, doi: 10.1364/OE.26.029283.
[25] D. H. Schneider, M. A. Briere, J. McDonald, and J. Biersack, "Ion/surface interaction studies with 1-3 keV/amu ions up to Th80+," Radiation Effects and Defects in Solids, vol. 127, no. 2, pp. 113-136, 1993, doi: 10.1080/10420159308220308.
[26] J. D. G. Hai-Ping Cheng., "Nanoscale modification of silicon surfaces via Coulomb explosion," PHYSICAL REVIEW B, vol. VOLUME 55, NUMBER 4, 1997, doi: 0163-1829/97/55~4!/2628~9!/$10.00.
[27] M. Henyk, R. Mitzner, D. Wolfframm, and J. Reif, "Laser-induced ion emission from dielectrics," (in English), Applied Surface Science, vol. 154, pp. 249-255, Feb 2000, doi: Doi 10.1016/S0169-4332(99)00377-3.
[28] M. Henyk, D. Wolfframm, and J. Reif, "Ultra short laser pulse induced charged particle emission from wide bandgap crystals," (in English), Applied Surface Science, vol. 168, no. 1-4, pp. 263-266, Dec 15 2000, doi: Doi 10.1016/S0169-4332(00)00619-X.
[29] R. Zhou et al., "Structural modifications induced by ultrafast IR laser pulses in sapphire," presented at the 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology, 2019.
[30] S. M. Ming Li, John P. Nibarger, and George N. Gibson, "Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics," PHYSICAL REVIEW LETTERS, vol. VOLUME 82, NUMBER 11, 1998, doi: 0031-9007/99/82(11)/2394(4).
[31] 余海本, "飞秒激光对透明电介质材料的烧蚀与微加工研究," 2008.
[32] A. K. Nath, "Laser Drilling of Metallic and Nonmetallic Substrates," in Comprehensive Materials Processing, 2014, pp. 115-175.
[33] B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. Clokie, and R. J. Miller, "Effects of femtosecond laser irradiation on osseous tissues," Lasers Surg Med, vol. 39, no. 3, pp. 273-85, Mar 2007, doi: 10.1002/lsm.20466.
[34] A. P. Markopoulos, P. Koralli, G. Kyriakakis, M. Kompitsas, and D. E. Manolakos, "Molecular dynamics simulation of material removal with the use of laser beam," in Materials Forming and Machining, 2016, pp. 117-153.
[1] H. J. Scheel, "Historical aspects of crystal growth technology," Journal of Crystal Growth January 2000, doi: 10.1016/S0022-0248(99)00780-0.
[2] L. A. L. Elena R. Dobrovinskaya , Valerian Pishchik, Sapphire Material, Manufacturing, Applications (Springer US). 2009.
[3] Y. Development. "6’’ and Below : Small Dimension Wafer Market Trends 2020." https://s3.i-micronews.com/uploads/2020/09/YDR2001.pdf (accessed.
[4] "Global High Purity Alumina Market – Industry Analysis and Forecast (2019-2026) " https://www.maximizemarketresearch.com/?s=Global+Sapphire+Substrates+Market (accessed 2019 August
[5] R. B. Pravin Pawar, Amaresh Kumar, "Machining processes of sapphire: An overview," International Journal of Modern Manufacturing Technologies, vol. Volume 9, Issue 1, Pages 47 - 72, 2017.
[6] 程陽. "下世代行動寬頻揭序幕 七大重點技術成就5G eMBB." https://www.2cm.com.tw/2cm/zh-tw/tech/AE3100A41F36440CB003988E4EE76CA3 (accessed.
[7] T. Baier, "High-throughput laser processing of sapphire and chemically strengthened glass," 2014.
[8] A. R. D. Ashkenasi, H. Varel, M. Wahmer, and E. E. B. Campbell, "Laser processing of sapphire with picosecond and subpicosecond pulses," 1997.
[9] E. Gu et al., "Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser," (in English), Thin Solid Films, vol. 453, pp. 462-466, Apr 1 2004, doi: 10.1016/j.tsf.2003.11.133.
[10] Y. Okamoto, T. Takekuni, and A. Okada, "Formation of Internal Modified Line with High Aspect Ratio in Sapphire by Sub-nanosecond Pulsed Fiber Laser," (in English), J Laser Micro Nanoen, vol. 9, no. 1, Mar 2014, doi: 10.2961/jlmn.2014.01.0011.
[11] "Femtosecond laser micromachining: A back-to-basics primer." https://www.industrial-lasers.com/cutting/article/16488567/femtosecond-laser-micromachining-a-backtobasics-primer (accessed 2012 Jun.
[12] s. choi, "The Conditional Analysis of Dispositions and the Intrinsic Dispositions Thesis," Philosophy and Phenomenological Research, 2009.
[13] A. N. Samant and N. B. Dahotre, "Laser machining of structural ceramics—A review," Journal of the European Ceramic Society, vol. 29, no. 6, pp. 969-993, 2009, doi: 10.1016/j.jeurceramsoc.2008.11.010.
[14] Z. H. S. X. Wang, J. Lu, and X. W. Ni, "Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes," Journal of Applied Physics, vol. 108, no. 3, 2010, doi: 10.1063/1.3466996.
[15] J. Z. Mahadi Hasan., Zhengyi Jiang, "A review of modern advancements in micro drilling techniques," Journal of Manufacturing Processes,, vol. 29, pp. Pages 343-375, 2017.
[16] Y. Fukuzawa, N. Mohri, T. Tani, and A. Muttamara, "Electrical discharge machining properties of noble crystals," Journal of Materials Processing Technology, vol. 149, no. 1-3, pp. 393-397, 2004, doi: 10.1016/j.jmatprotec.2003.12.028.
[17] J. Wang, P. Feng, J. Zhang, C. Zhang, and Z. Pei, "Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials," International Journal of Machine Tools and Manufacture, vol. 101, pp. 18-27, 2016, doi: 10.1016/j.ijmachtools.2015.10.005.
[18] Z. Liang, X. Wang, Y. Wu, L. Xie, Z. Liu, and W. Zhao, "An investigation on wear mechanism of resin-bonded diamond wheel in Elliptical Ultrasonic Assisted Grinding (EUAG) of monocrystal sapphire," Journal of Materials Processing Technology, vol. 212, no. 4, pp. 868-876, 2012, doi: 10.1016/j.jmatprotec.2011.11.009.
[19] Y.-A. C. Bor Kai Wang, Aric Shorey, Garrett Piech, "Thin Glass Substrates Development and Integration For Through Glass Vias (TGV) With Copper (Cu) Interconnects," presented at the Packaging, Assembly and Circuits Technology Conference, 2012.
[20] C. K. Lee, Chien, C.H., Chiang, C.W., Shen, W.W., Fu, H.C., Lee, Y.C., Tsai, W.L., Wang, J.C., Chang, P.C., Zhan, C.J., Lin, Y.M., Cheng, R.S., Ko, C.T., Lo, W.C., & Lu, Y.J., "Investigation of the process for glass_interposer," presented at the Packaging, Assembly and Circuits Technology Conference, 2013.
[21] R. Ostholt, Ambrosius, N., & Krüger, R.A.,, "High speed through glass via manufacturing technology for interposer," presented at the Electronics System-Integration Conference, 2014.
[22] H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, "Metal particle manipulation by laser irradiation in borosilicate glass," Opt Express, vol. 18, no. 19, pp. 20313-20, Sep 13 2010, doi: 10.1364/OE.18.020313.
[23] E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Applied Physics Letters, vol. 71, no. 7, pp. 882-884, 1997, doi: 10.1063/1.119677.
[24] L. Capuano, R. Pohl, R. M. Tiggelaar, J. W. Berenschot, J. G. E. Gardeniers, and G. Romer, "Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etching," Opt Express, vol. 26, no. 22, pp. 29283-29295, Oct 29 2018, doi: 10.1364/OE.26.029283.
[25] D. H. Schneider, M. A. Briere, J. McDonald, and J. Biersack, "Ion/surface interaction studies with 1-3 keV/amu ions up to Th80+," Radiation Effects and Defects in Solids, vol. 127, no. 2, pp. 113-136, 1993, doi: 10.1080/10420159308220308.
[26] J. D. G. Hai-Ping Cheng., "Nanoscale modification of silicon surfaces via Coulomb explosion," PHYSICAL REVIEW B, vol. VOLUME 55, NUMBER 4, 1997, doi: 0163-1829/97/55~4!/2628~9!/$10.00.
[27] M. Henyk, R. Mitzner, D. Wolfframm, and J. Reif, "Laser-induced ion emission from dielectrics," (in English), Applied Surface Science, vol. 154, pp. 249-255, Feb 2000, doi: Doi 10.1016/S0169-4332(99)00377-3.
[28] M. Henyk, D. Wolfframm, and J. Reif, "Ultra short laser pulse induced charged particle emission from wide bandgap crystals," (in English), Applied Surface Science, vol. 168, no. 1-4, pp. 263-266, Dec 15 2000, doi: Doi 10.1016/S0169-4332(00)00619-X.
[29] R. Zhou et al., "Structural modifications induced by ultrafast IR laser pulses in sapphire," presented at the 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology, 2019.
[30] S. M. Ming Li, John P. Nibarger, and George N. Gibson, "Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics," PHYSICAL REVIEW LETTERS, vol. VOLUME 82, NUMBER 11, 1998, doi: 0031-9007/99/82(11)/2394(4).
[31] 余海本, "飞秒激光对透明电介质材料的烧蚀与微加工研究," 2008.
[32] A. K. Nath, "Laser Drilling of Metallic and Nonmetallic Substrates," in Comprehensive Materials Processing, 2014, pp. 115-175.
[33] B. Girard, D. Yu, M. R. Armstrong, B. C. Wilson, C. M. Clokie, and R. J. Miller, "Effects of femtosecond laser irradiation on osseous tissues," Lasers Surg Med, vol. 39, no. 3, pp. 273-85, Mar 2007, doi: 10.1002/lsm.20466.
[34] A. P. Markopoulos, P. Koralli, G. Kyriakakis, M. Kompitsas, and D. E. Manolakos, "Molecular dynamics simulation of material removal with the use of laser beam," in Materials Forming and Machining, 2016, pp. 117-153.
[35] K. Chaudhary, S. Z. H. Rizvi, and J. Ali, "Laser-Induced Plasma and its Applications," in Plasma Science and Technology - Progress in Physical States and Chemical Reactions, 2016, ch. Chapter 11.
[36] J. Penczak, R. Kupfer, I. Bar, and R. J. Gordon, "The role of plasma shielding in collinear double-pulse femtosecond laser-induced breakdown spectroscopy," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 97, pp. 34-41, 2014, doi: 10.1016/j.sab.2014.04.007.
[37] D. Liu and D. M. Zhang, "Vaporization and plasma shielding during high power nanosecond laser ablation of silicon and nickel," (in English), Chinese Phys Lett, vol. 25, no. 4, pp. 1368-1371, Apr 2008. [Online]. Available: <Go to ISI>://WOS:000255153000056.
[38] C. P. Grigoropoulos et al., "Laser processing transparent materials with nanosecond, picosecond and femtosecond pulses for industrial applications," presented at the Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXIII, 2018.
[39] H. Horisawa, H. Emura, and N. Yasunaga, "Surface machining characteristics of sapphire with fifth harmonic YAG laser pulses," Vacuum, vol. 73, no. 3-4, pp. 661-666, 2004, doi: 10.1016/j.vacuum.2003.12.065.
[40] V. D. EAST. "Sapphire optical properties and Sapphire optical transmission." (accessed.
[41] G. Lott, N. Falletto, P.-J. Devilder, and R. Kling, "Optimizing the processing of sapphire with ultrashort laser pulses," Journal of Laser Applications, vol. 28, no. 2, 2016, doi: 10.2351/1.4944509.
[42] K. G. Konstantin Mishchik , and John Lopez "Drilling of Through Holes in Sapphire Using Femtosec-ond Laser Pulses," Journal of Laser Micro/Nanoengineering, vol. 12, no. 3, 2017, doi: 10.2961/jlmn.2017.03.0024.
[43] M. Putzer, N. Ackerl, and K. Wegener, "Geometry assessment of ultra-short pulsed laser drilled micro-holes," Int J Adv Manuf Technol, vol. 117, no. 7-8, pp. 2445-2452, 2021, doi: 10.1007/s00170-020-06199-5.
[44] F. Dwikusuma, D. Saulys, and T. F. Kuech, "Study on Sapphire Surface Preparation for III-Nitride Heteroepitaxial Growth by Chemical Treatments," Journal of The Electrochemical Society, vol. 149, no. 11, 2002, doi: 10.1149/1.1509072.
[45] S.-J. Kim, "Vertical Electrode GaN-Based Light-Emitting Diode Fabricated by Selective Wet Etching Technique," Japanese Journal of Applied Physics, vol. 44, no. 5A, pp. 2921-2924, 2005, doi: 10.1143/jjap.44.2921.
[46] V. Khuat, Y. Ma, J. Si, T. Chen, F. Chen, and X. Hou, "Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching," Applied Surface Science, vol. 289, pp. 529-532, 2014, doi: 10.1016/j.apsusc.2013.11.030.
[47] J. Gottmann, "Microcutting and Hollow 3D Microstructures in Glasses by In-volume Selective Laser-induced Etching (ISLE)," Journal of Laser Micro/Nanoengineering, vol. 8, no. 1, pp. 15-18, 2013, doi: 10.2961/jlmn.2013.01.0004.
[48] G. Schnell, U. Duenow, and H. Seitz, "Effect of Laser Pulse Overlap and Scanning Line Overlap on Femtosecond Laser-Structured Ti6Al4V Surfaces," Materials (Basel), vol. 13, no. 4, Feb 21 2020, doi: 10.3390/ma13040969.
[49] 台灣基恩斯股份有限公司, "Keyence 官網," 2022. [Online]. Available: https://www.keyence.com.tw/.
[50] M. o. S. a. Technology. "Field-emission Scanning Electron Microscopy." https://vir.most.gov.tw/VI_SearchResult?center=8A818346-1E15-CEA6-011E-15D1ADA70011 (accessed.
[51] S. Juodkazis et al., "Control over the Crystalline State of Sapphire," Advanced Materials, vol. 18, no. 11, pp. 1361-1364, 2006, doi: 10.1002/adma.200501837.
[52] P. Kumar, J. Lee, G. Lee, S. Rao, D. Singh, and R. K. Singh, "Low temperature wet etching to reveal sub-surface damage in sapphire substrates," Applied Surface Science, vol. 273, pp. 58-61, 2013, doi: 10.1016/j.apsusc.2013.01.137.
[53] M. Hörstmann-Jungemann, "3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching," Journal of Laser Micro/Nanoengineering, vol. 5, no. 2, pp. 145-149, 2010, doi: 10.2961/jlmn.2010.02.0009.
[54] S. Juodkazis and H. Misawa, "Laser processing of sapphire by strongly focused femtosecond pulses," Applied Physics A, vol. 93, no. 4, pp. 857-861, 2008, doi: 10.1007/s00339-008-4763-0.
[55] G. Lott, G. Lafoy, R. Kling, P.-J. Devilder, and N. Falletto, "Enhanced drilling of transparent materials with ultrashort pulses," presented at the International Congress on Applications of Lasers & Electro-Optics, 2016.
[56] H. S. Lars Brusberg, Michael Töpper, Herbert Reichl, "Photonic System-in-Package Technologies Using Thin Glass Substrates," presented at the Electronics Packaging Technology Conference, 2009.
[57] L.-M. Y. Huan Huang, and Jian Liu, "Micro-hole drilling and cutting using femtosecond fiber laser," presented at the Optical Engineering, 2014.
[58] Q. Chen, H.-J. Wang, D.-T. Lin, F. Zuo, Z.-X. Zhao, and H.-T. Lin, "Characterization of hole taper in laser drilling of silicon nitride ceramic under water," Ceramics International, vol. 44, no. 11, pp. 13449-13452, 2018, doi: 10.1016/j.ceramint.2018.04.173.
[59] X. Fang, J. Dou, X. Dong, and W. Duan, "Research on sapphire micro-blind-hole machining based on femtosecond laser," Ferroelectrics, vol. 563, no. 1, pp. 31-44, 2020, doi: 10.1080/00150193.2020.1760607.
指導教授 何正榮(Jeng-Rong Ho) 審核日期 2022-4-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明