博碩士論文 108323050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.116.42.157
姓名 林煜唐(Yu-Tang Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電化學快速薄化碳化矽基板
(Rapid thinning of silicon carbide by electrochemical etching)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 碳化矽本身有著相當穩定的化學性質,因此在室溫環境下幾乎不與任何物質反應,而一般化學蝕刻都必須要在高溫的環境下進行,造成製造成本的增加。本實驗在室溫下對碳化矽(4H-SiC)進行電化學蝕刻,透過氫氟酸(HF)與酒精(C2H5OH)體積比1:1的蝕刻液進行蝕刻,在相同蝕刻時間下使用300mA、400mA、500mA等不同電流,在蝕刻過程皆觀察到電壓的瞬間上升,蝕刻區域因側切現象產生分層並產生薄膜,本研究為觀察不同電流下的蝕刻速率差異與蝕刻後所產生之薄膜的關係。並藉由穿透式與掃描式電子顯微鏡(TEM & SEM)觀察薄膜與蝕刻後試片的顯微結構,以及使用X射線衍射儀(XRD)、拉曼光譜儀(Raman)與能量色散X射線光譜(EDS)觀察薄膜元素成分與晶體結構,最後使用原子力顯微鏡(AFM)掃描蝕刻後的薄膜與原試片表面粗糙度的差異性。實驗結果得出隨著電流上升,薄膜產生的時間縮短與薄膜厚度增加,表示碳化矽基板的厚度隨著電流增加在較短的時間內達到減薄的現象。
摘要(英) Silicon carbide, with stable chemical properties, will not react with almost any substance at room temperature, whereas chemical etching is usually performed at high temperature, which increases the manufacturing cost. In this experiment, electrochemical etching of silicon carbide (4H-SiC) was carried out at room temperature with an etching solution of hydrofluoric acid (HF) and alcohol (C2H5OH) with a volume ratio of 1:1.
In this study, we observed the relationship between the difference in etching rate at different currents and the films produced after etching. The relationship between the etched films and the etched films was observed by Transmission and scanning electron microscopy (TEM & SEM), and by X-ray diffraction (XRD), Raman spectroscopy (Raman) and energy dispersive X-ray spectroscopy (EDS). The difference in roughness between the etched film and the original specimen was scanned by AFM. The results showed that as the current increased, the film generation time shortened and the thickness of film increased, which indicate that the thickness of the silicon carbide substrate thinned in a relatively short period of time as the current increased.
關鍵字(中) ★ 碳化矽
★ 碳化矽薄膜
★ 快速薄化
★ 電化學蝕刻
關鍵字(英) ★ Silicon Carbide
★ SiC thin film
★ Rapid thinning
★ Electrochemical etching
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
第二章 原理與文獻回顧 3
2-1 蝕刻機制 3
2-1-1 乾式、濕式與電化學蝕刻 3
2-1-2 缺陷選擇性蝕刻 7
2-1-3 碳化矽材料特性與電化學蝕刻現象 7
2-2 晶圓薄化技術 9
2-2-1 化學機械研磨 9
2-2-2 冷切割法 10
第三章 實驗方法與步驟 12
3-1 試片與清洗流程 12
3-2 實驗流程 14
3-2-1 電化學蝕刻設備 14
3-2-2 蝕刻溶液調配 15
3-3 分析儀器介紹 16
3-3-1 場發射掃描式電子顯微鏡(FE-SEM) 16
3-3-2 高解析掃描穿透式電子顯微鏡(HR-STEM) 17
3-3-3 原子力顯微鏡(AFM) 18
3-3-4 光激發螢光頻譜(PL) 19
3-3-5 X射線衍射儀(XRD) 20
3-3-6 拉曼光譜儀(Raman) 21
第四章 結果與討論 22
4-1碳化矽快速薄化機制與不同定電流對蝕刻之影響 22
4-1-1 碳化矽快速薄化機制 24
4-1-2 電流對蝕刻之影響結果與討論 29
4-2 碳化矽蝕刻速率之結果 32
4-2-1 蝕刻速率與電流大小之結果與討論 32
4-3 蝕刻後試片表面結構變化結果與討論 34
4-3-1 碳化矽基板表面結構型貌 34
4-3-2 碳化矽薄膜結構型貌結果與討論 38
4-4 碳化矽試片之側切現象 43
4-4-1 側切(Lateral-Cutting)現象討論 43
4-4-2 碳化矽薄膜剖面結構型貌 46
4-5 碳化矽薄膜分析之結果 56
4-5-1 碳化矽薄膜XRD分析結果與討論 56
4-5-2 碳化矽薄膜PL分析結果與討論 57
4-5-3 碳化矽薄膜EDS分析結果與討論 58
4-5-4 蝕刻結果之Raman分析 61
第五章 結論與未來展望 63
5-1 結論 63
5-2 未來展望 65
第六章 參考資料 66
參考文獻 【1】 Harris, G. L. (Ed.). (1995). Properties of silicon carbide (No. 13). Iet.
【2】 Swoboda M, Rieske R, Beyer C, Ullrich A, Gesell G, Richter J. Cold Split Kerf-Free Wafering Results for Doped 4H-SiC Boules. Materials Science Forum. 2019;963:10-3.
【3】 Shor JS, Grimberg I, Weiss BZ, Kurtz AD. Direct observation of porous SiC formed by anodization in HF. Applied Physics Letters. 1993;62(22):2836-8.
【4】 Nojiri K. Dry etching technology for semiconductors: Springer; 2015.
【5】 Pearton, S. J. "Reactive ion etching of III–V semiconductors." International Journal of Modern Physics B 8.14 (1994): 1781-1876.
【6】 Zhuang, D., and J. H. Edgar. "Wet etching of GaN, AlN, and SiC: a review." Materials Science and Engineering: R: Reports 48.1 (2005): 1-46.
【7】 Quirk M, Serda J. Semiconductor manufacturing technology: Prentice Hall Upper Saddle River, NJ; 2001.
【8】 Allongue, P., Costa‐Kieling, V., & Gerischer, H. Etching of Silicon in NaOH Solutions: II. Electrochemical Studies of n‐Si (111) and (100) and Mechanism of the Dissolution. Journal of the Electrochemical Society, 140.4 (1993): 1018.
【9】 Palik ED, Glembocki OJ, Heard I, Burno PS, Tenerz L. Etching roughness for (100) silicon surfaces in aqueous KOH. Journal of Applied Physics. 1991;70(6):3291-300.
67
【10】 Elwenspoek M. The form of etch rate minima in wet chemical anisotropic etching of silicon. Journal of Micromechanics and Microengineering. 1996;6(4):405-9.
【11】 W. F. Knippenberg, “Philips Research Reports,” Vol. 18, No. 3,
pp.161-274, (1963).
【12】 Lauermann, I., Memming, R., & Meissner, D. Electrochemical properties of silicon carbide. Journal of The Electrochemical Society, 144.1 (1997): 73.
【13】 Rysy, S., Sadowski, H., & Helbig, R. Electrochemical etching of silicon carbide. Journal of Solid State Electrochemistry, 3.7-8 (1999): 437-445.
【14】 Senthilnathan, Jaganathan, et al. "Synthesis of carbon films by electrochemical etching of SiC with hydrofluoric acid in nonaqueous solvents." Carbon 71 (2014): 181-189.
【15】 Kim, Young Suk, et al. "Advanced wafer thinning technology and feasibility test for 3D integration." Microelectronic Engineering 107 (2013): 65-71.
【16】 Dong Z, Lin Y. Ultra-thin wafer technology and applications: A review. Materials Science in Semiconductor Processing. 2020;105.
【17】 Omiya T, Tanaka A, Shimomura M. Morphological Study on Porous Silicon Carbide Membrane Fabricated by Double-Step Electrochemical Etching. Japanese Journal of Applied Physics. 2012;51.
【18】 Cao, Tuan Anh, Truc Quynh Ngan Luong, and Tran Cao Dao. "Green synthesis of a carbon-rich layer on the surface of SiC at room temperature by anodic etching in dilute hydrofluoric acid/ethylene glycol solution." Green Processing and Synthesis 5.5 (2016): 491-498..
68
【19】 Wang S, Huang Q, Guo R, Xu J, Lin H, Cao J. Study on the layering phenomenon of SiC porous layer fabricated by constant current electrochemical etching. Nanotechnology. 2020;31(20):205702.
【20】 van Dorp DH, Kelly JJ. Photoelectrochemistry of 4H–SiC in KOH solutions. Journal of Electroanalytical Chemistry. 2007;599(2):260-6
【21】 Tanaka A, Katsuno H. Formation of Bare Porous Surface on 6H-SiC Substrates by Photo-Electrochemical Etching. Japanese Journal of Applied Physics. 2009;48(12).
【22】 Gautier, Gael, et al. "Room light anodic etching of highly doped n-type 4 H-SiC in high-concentration HF electrolytes: Difference between C and Si crystalline faces." Nanoscale research letters 7.1 (2012): 1-6.
【23】 李明承:〈整合光輔助電化學穿孔蝕刻與微電鑄技術應用於微金屬柱陣列之研究〉,臺灣師範大學機電科技研究所學位論文 (2006): 1-97.
【24】 Lu, Weifang, et al. "White light emission from fluorescent SiC with porous surface." Scientific reports 7.1 (2017): 1-9.
【25】 Jessensky, O., F. Müller, and U. Gösele. "Microstructure and photoluminescence of electrochemically etched porous SiC." Thin Solid Films 297.1-2 (1997): 224-228.
【26】 Freitas Jr, J. A., and W. J. Moore. "Optical studies of undoped and doped wide bandgap carbide and nitride semiconductors." Brazilian journal of physics 28.1 (1998): 12-18.
指導教授 李天錫(Lee, Benjamin Tien-Hsi) 審核日期 2021-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明