博碩士論文 108323051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.217.106.26
姓名 陳敬岳(Chen Chin-Yueh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高韌性鐵基金屬玻璃粉末之雷射積層製造與 能量密度研究
(Additive manufacturing of Fe-based metallic glass powder with high fracture toughness and energy density analysis)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 本研究以 Fe-Cr-Mo-C-B-Co-Al 七元合金成分之鐵基金屬玻璃作為基
礎,透過高週波真空感應爐熔煉並澆注成合金鑄錠,再以氣噴粉體法(Gas
atomization)製作出鐵基金屬玻璃粉體,本研究粉體來源有二,分別委託工研院材化所以及中佑精密製備。工研院材化所製備粉體共進行 20 爐次,平均產率為 15.3%;中佑精密製備粉體共進行 3 爐次,平均產率為 24%。每一爐次粉體經搖篩機篩分,再以 X 光繞射確認各區間粒徑粉體之非晶態與析出相,結果顯示粒徑在 90 μm 以下皆保有非晶態以及析出相 α-Fe組織,而當粒徑在< 25 μm 時為全非晶結構;利用 EPMA 確認粉體成分與配方相符;利用掃描式電子顯微鏡觀測其粉體外觀形貌為球型且截面為實心構造,後續將以不同能量密度進行積層製造可型性的評估。
為了提高粉體的流動性以利舖粉,委請中佑精密材料股份有限公司以
氣旋篩分(Cyclone)方式去除 25 μm 以下之粉體,並以此粉體和未經氣旋篩分之粉體去做選擇性雷射熔融(SLM)以 60 W-150 mm/s 參數製作試片進行性質分析。分析結果顯示,經氣旋篩分之粉體所製作的試片硬度從 924 Hv提升至 1148 Hv、緻密度從 93% 提升至 97 %。抗腐蝕能力方面,腐蝕電流與腐蝕電壓為 7.40x10-7(A/cm2)和-0.254V 優於未經氣旋篩分之粉體所製作的試片,由此可知氣旋篩分改善粉體粒徑的均一性、提升積層製造時鋪粉的平整度品質,同時提升試片的機械與抗腐蝕性能。將中佑精密製備之粉體依照 5 種不同能量密度去做 SLM,分別測試它們的 X 光繞射、熱性質、緻密度、機械性質及抗腐蝕性質分析。發現隨著能量密度減少,積層試片的非晶度和硬度會有所提升,但同時緻密度也會下降。因此藉由抗腐蝕測試來證明哪個積層試片的性能最好,發現 Sample II(Overlapping 30%)的抗腐蝕能力優於其他 4 種試片,為最好的參數。
摘要(英) The alloy composition of Fe-Cr-Mo-C-B-Co-Al 7 components Fe-based alloy was selected as the master alloy and prepared by vacuum induction melting. Then the alloy ingots were re-melted and fabricated into spherical
alloy powder by gas atomization process. There are two sources of powder in this study, from the Material and Chemical Laboratories, Industrial Technology Research Institute (ITRI, Hsinchu) and Chung Yo Materials Co.,Ltd.(C.Y.M, Kaohsiung). After size sieving, the Fe-based alloy powder was characterized its amorphous status by X-ray diffraction (XRD). The XRD results revealed that a broaden peak accompanied the weak crystalline peaks of α-Fe occurred at the alloy powders with particle size below 90μm. Meanwhile, the appearance of all these Fe-based alloy powders present a spherical shape and a solid cross-section.In order to improve the fluidity of the powder to facilitate powder spreading, removing the powder below 25 μm by Cyclone screening in C.Y.M and use this powder and another powder which hasn’t been sieved by cyclone
to do additive manufacture by selective laser melting (SLM) with 60W-150mm/s parameters for property analysis. The analysis results showed that the hardness of the specimen made of cyclone screened powder was increased from 924 Hv to 1148 Hv, and the density increased from 7.22 g/cm3 to 7.51 g/cm3.In terms of corrosion resistance, the corrosion current and corrosion voltage are 7.40x10-7
(A/cm2) and -0.254V is better than SLM specimen without cyclone sieveing. It can be seen that the cyclone sieveing
improves the quality of the powder and improves the performance of the SLM specimen.
The powder which prepared by C.Y.M to make SLM specimen of 5 different energy densities, and tested their XRD, thermal properties, density,mechanical properties and corrosion resistance. It is found that as the energy
density decreases, the amorphous ratio and hardness of specimen will increase,but at the same time the density will also decrease. Therefore, the corrosion
resistance test is used to prove specimen which has the best performance. It is found that the corrosion resistance of Sample II (Overlapping 30%) is better
than the other four types of SLM specimen, which is the best parameter.
關鍵字(中) ★ 鐵基金屬玻璃
★ 氣噴粉體法
★ 氣旋篩分
★ 積層製造
★ 抗腐蝕
★ 能量密度
關鍵字(英) ★ Fe-based bulk metallic glass
★ gas atomization
★ cyclone
★ additive manufacturing
★ corrosion resistance
★ energy density
論文目次 中文摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 2
第二章 理論基礎 7
2-1 金屬玻璃合金之概述 7
2-2 金屬玻璃合金發展 7
2-3 金屬玻璃合金之種類 9
2-3-1 鐵基金屬玻璃合金 9
2-4 金屬玻璃合金設計與製作 10
2-4-1 實驗歸納法則 10
2-4-2 金屬玻璃合金製程 11
2-5 金屬玻璃合金特性 12
2-5-1 熱力學性質 12
2-5-2 特徵溫度 13
2-5-3玻璃形成能力(GFA, Glass forming ability ) 13
2-6 金屬玻璃合金之機械性質 15
2-7 氣噴法粉體製備 15
2-8 積層製造 16
2-8-1 選擇性雷射燒熔 17
2-8-2 能量密度對於選擇性雷射燒熔的影響 18
2-8-3 鐵基金屬玻璃粉體應用於積層製造 18
第三章 實驗步驟與方法 26
3-1 實驗目的及流程 26
3-2 工研院氣噴粉體之合金製備 26
3-2-1 合金配製 26
3-2-2 合金熔煉 26
3-2-3 粉體製備(氣噴粉體法) 27
3-2-4 粉體粒徑篩選 27
3-2-5 氣旋篩分(cyclone)-旋風分級 27
3-3 中佑精密氣噴粉體之合金製備 28
3-3-1 合金配製 28
3-3-2 合金熔煉及粉體製備(氣噴粉體法) 28
3-3-3氣旋篩分(cyclone)-旋風分級 28
3-4 鐵基金屬玻璃粉體之性質分析 28
3-4-1 XRD繞射分析 28
3-4-2 成分分析(高解析度場發射電子微探儀(FE-EPMA)) 28
3-4-3 粉體之表面&截面形貌之 SEM 觀察 29
3-4-4 熱性質分析 29
3-5 積層製造 29
3-5-1 面型燒結測試 30
3-5-2 方塊燒結測試 30
3-6 積層製造工件燒結性質分析 30
3-6-1 積層製造工件之能量密度計算 30
3-6-2 積層製造工件之立體顯微鏡分析 31
3-6-3 X光繞射分析(XRD) 31
3-6-4 光學顯微鏡分析(Optical Microscopy) 31
3-6-5 掃描式電子顯微鏡分析(SEM) 31
3-6-6 工件緻密度量測 32
3-6-7 維克式硬度量測 32
3-6-8 破裂韌性量測 33
3-6-9 腐蝕測試(Tafel動態極化法) 33
3-6-10 熱性質分析 33
第四章 結果與討論 48
4-1 工研院之鐵基金屬玻璃粉體之性質分析 48
4-1-1 鐵基金屬玻璃粉體製備 48
4-1-2 X光繞射分析(XRD) 48
4-1-3 粉體之外觀&截面形貌之SEM 觀察 49
4-2 中佑精密之鐵基金屬玻璃粉體之性質分析 49
4-2-1 鐵基金屬玻璃粉體製備 49
4-2-2 X光繞射分析(XRD) 49
4-2-3 粉體之外觀&截面形貌之SEM 觀察 50
4-2-4 EPMA 成分分析 50
4-2-5 非恆溫熱性質分析 50
4-3雷射積層製造測試分析 51
4-3-1 SLM試片之熔融參數 51
4-3-2 SLM試片之立體顯微鏡觀察 51
4-4 SLM試片之性質分析-Powder A、Powder B 51
4-4-1 X光繞射分析(XRD) 51
4-4-2 掃描式電子顯微鏡分析(SEM) 52
4-4-3 工件緻密度量測 52
4-4-4 熱性質分析 52
4-4-5 維克式硬度與破裂韌性量測 53
4-4-6 腐蝕性質分析(Tafel動態極化法) 53
4-5 SLM試片之性質分析-Powder C 54
4-5-1 X光繞射分析(XRD) 54
4-5-2 光學顯微鏡分析(Optical Microscopy) 54
4-5-3 工件緻密度量測 55
4-5-4 熱性質分析 55
4-5-5 維克式硬度與破裂韌性量測 56
4-5-6 腐蝕性質分析(Tafel動態極化法) 56
第五章 結論 127
第六章 參考文獻 128
參考文獻 [1] A. C. Lund, " Topological and chemical arrangement of binary alloys during severe deformation ", Journal of Applied Physics, Vol. 95 pp.4815-4822 (2004).
[2] H. S. Chen , H.J. Leamy, and C. E. Miller, "Preparation of glassy metals", Ann. Rev. Mater. Sci. 10:363-91 (1980).
[3] Wang, L. and Chao, Y. (2012). Corrosion behavior of Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in NaCl solution. Materials Letters, 69, pp.76-78.
[4] A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials, Springer, (2001)
[5] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys", Acta Materialia, Vol. 48, pp. 279-306, (2000).
[6] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, "Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication", Materials Science and Engineering, Vol. A449–451, pp. 898–902, (2007).
[7] Jason Shian-Ching Jang, Pei-Hua Tsai, An-Zin Shiao, Tsung-Hsiung Li, Chih-Yu Chen, Jinn Peter Chu, Jenq-Gong Duh, Ming-Jen Chen, Shih-Hsin Chang, Wen-Chien Huang, "Enhanced cutting durability of surgical blade by coating with Fe-based metallic glass thin film", Intermetallics, Vol. 65, pp. 56-60, (2015).
[8] Zhou, B., Zhou, J., Li, H. and Lin, F. (2018). A study of the microstructures and mechanical properties of Ti6Al4V fabricated by SLM under vacuum. Materials Science and Engineering: A, 724, pp.1-10.
[9] P. H. Tsai, A. C. Xiao, J.B. Li, J.S.C. Jang, J.P. Chun, J.C. Huang," Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance", Journal of alloys and compounds, Vol 586,pp.94-98, (2014).
[10] 林延輯 ,雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究 ,106 碩士論文 , 國立中央大學
[11] 張喬冠 ,積層製造用高韌性鐵基金屬玻璃合金粉體之開發與製作 ,108 碩士論文 , 國立中央大學
[12] 朱家銓,雷射積層製造用高韌性鐵基金屬玻璃粉末與其工件性質之研究 ,109 碩士論文 , 國立中央大學
[13] J. Kramer, Produced the first amorphous metals through vapor deposition, Annals of Physics, Vol. 19, pp. 37, (1934).
[14] A. Brenner, D. E. Couch, and E. K. Williams, Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt, Journal of Research of the National Bureau of Standards, Vol. 44, pp. 109-122, (1950).
[15] W. Klement, R. H. Willens, and P. Duwez, Non-crystalline Structure in solidified Gold-Silicon alloys, Nature, Vol. 187, pp. 869-870, (1960).
[16] H. S. Chen, Glassy metals, Rep. Prog. Phys, Vol. 43, pp. 364, (1980).
[17] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, Preparation of amorphous Ni60Nb40 by mechanical alloying, Applied Physics Letters, Vol. 43, pp. 1017-1019, (1983).
[18] A. Inoue, High strength bulk amorphous alloys with low critical cooling rates, Materials Transactions JIM, Vol.36, pp. 866-875, (1995).
[19] A. Inoue, T. Zhang, and T. Masumoto, Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method, Material Transactions JIM, Vol. 31, pp. 425-428, (1990).
[20] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method, Materials Transactions JIM, Vol. 33, pp. 937-945, (1992).
[21] Zhu SL, Wang XM, Inoue A. Intermetallics 2008;16:1031.
[22] A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, Vol 59, pp. 2243-2267, 2011
[23] A. Inoue, Y. Shinohara, J. S. Gook, Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting, Material Transactions, Vol. 36, pp. 1427-1433, (1995).
[24] R. Babilas, and R. Nowosielski , "Iron-based bulk amorphous alloys", Archives of Materials Science and Engineering, Vol. 44, Issue 1, pp. 5-27, (2010).
[25] J. Shen, Q. J. Chen, J. F. Sun, H. B. Fan, and G. Wang, " Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy", Applied physics letters, Lett.90, (2005).
[26] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates", Materials Transactions JIM, Vol. 36, pp. 866-875, (1995).
[27] R. Abbaschian, L. Abbaschian, R. E. Reed-hill, Physical Metallurgy Principles, Third edition, (1994).
[28] K. W. Dalgarno and T.D. Stewart, " Manufacture of production injection mould tooling incorporating conformal cooling channels via indirect selective laser sintering", proceeding of the institution of mechanical engineers, Vol. 215, Issue 10, pp. 1323-1332, (2001).
[29] C. Suryanarayana, A. Inoue, "Bulk Metallic Glassed", p.61, (2011).
[30] G. N. Jackson, “R. F. sputtering”, Thin Solid Film, Vol. 5, p.209, (1907).
[31] K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, (1969).
[32] A. Inoue, Materials Transactions JIM, Vol. 36, pp. 866, (1995).
[33] Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic glasses", Acta Materilia, Vol. 50, pp. 3501-3512, (2002).
[34] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New Criterion of Glass Forming Ability for Bulk Metallic Glasses", Journal of Applied Physics, Vol. 101, pp. 086108-1-3, (April 2007).
[35] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh , "Glass forming ability of bulk glass forming alloys" , Scr Mater , Vol. 36 , P. 783 , (1997).
[36] S. Guo, Z. P. Lu, C. T. Liu, "Identify the best glass forming ability criterion", Intermetallics,Vol. 18 , pp. 883-888 , (2010).
[37] K. W. Dalgarno and T.D. Stewart, " Manufacture of production injection mould tooling incorporating conformal cooling channels via indirect selective laser sintering", proceeding of the institution of mechanical engineers, Vol. 215, Issue 10, pp. 1323-1332, (2001).
[38] Randall M. German, Powder Metallurgy Science, Second edition, (1994).
[39] G. Antipas, " Liquid Column Deformation and Particle Size Distribution in Gas Atomization", Mater. Sci. Appl. Vol. 2, pp. 87-96, (2011).
[40] 蔡恆毅 , "選擇性雷射燒熔製程" , 工業材料雜誌 , Vol. 369, pp. 112-121, (2017).
[41] Wilhelm MeinersKonrad Dr WissenbachAndres Dr Gasser,” Shaped body especially prototype or replacement part production”(1996)
[42] B.C. Gross, J.L. Erkal, S.Y. Lockwood, Chengpeng Chen,and Dana M. Spence , " Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences", Analytical Chemistry, Vol. 86, pp. 3241-3243, (2014).
[43] Umberto Scipioni Bertoli , Alexander J. Wolfer , Manyalibo J. Matthews , Jean-Pierre R. Delplanque , Julie M. Schoenung , “On the limitations of Volumetric Energy Density as a design parameter for Selective Laser Melting”, Materials and Design ,Vol. 113, pp. 331-340, (2017).
[44] I. Yadroitsev, Ph. Bertrand, I. Smurov, Parametric analysis of the selective laser melting process, Applied Surface Science, Vol. 253, pp. 8064–8069, (2007)
[45] EO. Olakanmi, RF. Cochrane, KW. Dalgarno, " Densification mechanism and microstructural evolution in selective laser sintering of Al–12Si Powders", JMater Process Technol, Vol. 211, pp. 113–121, (2011).
[46] H. M. Ismaeel, M. A. Khattck, M. N. Tamin, M. S. Kham, N. Lqbal , S. Kazi , S. Badshah , R.U. Khan , "Energy Absorption Ability of Thin-Walled Square Hollow Section of Low Carbon Sheet Metals under Quasi-Static Axial Compression" , Journal of Advanced Research in Applied Mechanics , Vol. 18 , pp. 1-14, (2016).
[47] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements", Journal of the American Ceramic Society, Vol.6, pp. 533-538, (1981).
[48] S.F. Guo, K.C. Chan, S.H. Xie , P. Yu , Y.J. Huang , H.J. Zhang, "Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater" Journal of Non-Crystalline Solids Vol.369 (2013) 29–33.
指導教授 鄭憲清(Jang Shian-Ching) 審核日期 2021-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明