博碩士論文 108323068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.217.4.250
姓名 吳青鴻(Ching-Hung Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 儲槽內加入圓形轉動置入物對於顆粒排放行為之影響
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 在工業及生活中,儲槽經常扮演著儲存顆粒的角色,在需要時將顆粒排放,而儲槽的出口大小、顆粒的粗細、內部的流場都會影響排放情形。在符合一定條件下,架橋的產生使整體儲槽形成永久堵塞,這對一般業界或民生用途上有很大的困擾。
本論文主要是建置類二維儲槽,在槽內加入一順時針旋轉置入物,透過電子控制器調整轉速及利用氣壓閥來開閉出口,填入固定重量的顆粒,且為了捕捉顆粒的照片以及未來分析上的用途,搭配高速攝影機及粒子追蹤程式PTV (Particle Tracking Velocimetry)來分析數據,探討質量流率、速度、堆積分率隨轉速的變化,及轉速對架橋產生能力和破壞能力的比較。
從一系列的實驗後得到,加入轉動置入物確實會影響其排放物理量,並且在不同高度下所得到的趨勢有所不同,在高置入物位置下,置入物不易影響顆粒排放,當慢慢降低置入物的高度,因為高度下降導致顆粒水平速度變大,使碰撞程度及機會增加,導致排放因為碰撞的關係而變得有所不同,而當置入物到了過低高度,因為置入物是最接近開口的,對於排放的影響是最明顯,但在此位置所形成的架橋卻與其他高度有所不同。在增加轉速的過程中,也可以看出其對於架橋破壞或產生的趨勢,並可搭配剪率擬合出一線性關係並且進行預測。
摘要(英) In industry and life, storage tank usually plays an important part of storing or discharging the particles when we needed. Some factors will affect storage tank discharging situation, such as the outlet size of silo, particle’s thickness and the internal flow field. Under certain conditions, storage tank will appear arch to stop discharging which is an annoying issue for general industry or people’s livelihood.
This research was built a two-dimensional silo adding a clockwise rotation obstacle into the silo, also using electronic controller to change obstacle speed and open the outlet by air compressor. Filling fixed weight particles and captured particle’s photographs to analyze data with high speed camera and PTV (Particle Tracking Velocimetry) code. The flow rate, velocity field, packing fraction with changing rotation speed and compared arching formation, destruction ability will be discussed in the end.
After a series of experiments, it is found that rotating obstacle will affect the discharging physical quantities and the trends will be changed by different obstacle’s height. At higher positions, the obstacle is not easy to affect discharge but when obstacle height reduced, it will cause velocity change which make the degree of collision increase. Silo’s discharging situation will be different and changed by particle collision. When the obstacle reaches a too low position, the effect of discharging is most obvious because it is closest to the outlet than the other heights also the arch formed at this position is different. In the process of increasing the speed, it can be seen tendency of damage or produce the arch and can be matched with the shear rate to fit a linear relationship and make predictions in the future.
關鍵字(中) ★ 儲槽
★ 顆粒體
★ 架橋
★ 粒子流
★ 置入物
★ 轉動
關鍵字(英) ★ Silo
★ Particle
★ Arch
★ Granular flow
★ Obstacle
★ Rotation
論文目次 摘要 i
Abstract ii
目錄 iv
附表目錄 vii
附圖目錄 viii
符號目錄 xiv
第一章 緒論 1
1.1前言 1
1.2儲槽研究相關文獻回顧 3
1.2.1儲槽中出口狀態及質量流率 3
1.2.2儲槽內部速度場及內部顆粒分離 6
1.2.3儲槽架橋研究 7
1.2.4儲槽架橋破壞 8
1.2.5置入物在儲槽內部的影響 9
1.3研究動機 10
第二章 實驗方法 33
2.1 實驗設備 33
2.2 研究方法 35
2.2.1 顆粒堵塞機率分析法 36
2.2.2 質量流率分析法 36
2.2.3 粒子追蹤測速法 37
2.2.4 左右側質量流率分析法 37
2.2.5 左右側顆粒速度分析法 38
2.2.6 堆積分率分析法 38
2.2.7 架橋維持平均時間及產生架橋平均次數分析法 39
2.3 實驗步驟 39
第三章 結果與討論 53
3.1 儲槽系統排放行為 53
3.1.1儲槽質量變化及置入物高度對於架橋型態探討 53
3.1.2儲槽平均質量流率探討 55
3.1.3開口上方左右側平均質量流率探討 56
3.1.4儲槽內部顆粒水平速度場分析 58
3.1.5儲槽內部顆粒垂直速度場分析 59
3.1.6儲槽左右側堆積分率分析 60
3.2儲槽系統內架橋行為探討 61
3.2.1架橋產生行為探討 62
3.2.2架橋破壞行為探討 62
3.2.3破壞架橋中剪率變化探討 64
第四章 結論 96
參考文獻 98
參考文獻 [1] Prescott, J. K., & Barnum, R. A., 2000, “On powder flowability,” Pharmaceutical Technology.
[2] Jenike, A. W., 1961, “Gravity flow of bulk solids,” Bulletin of The University of Utah, Vol. 52.
[3] Harmens, A., 1963, “Flow of granular material through horizontal apertures,” Chemical Engineering Science, Vol. 18, pp. 297-306.
[4] To, K., Lai, P. Y., & Pak, H. K., 2001, “Jamming of granular flow in a two- dimensional hopper,” Physical Review Letters, Vol. 86(1), pp.71-74.
[5] Verghese, T. M., & Nedderman, R. M., 1995, “The discharge of fine sands from conical hoppers,” Chemical Engineering Science, Vol. 50(19), pp. 3143-3153.
[6] Ashour, A., Wegner, S., Trittel, T., Borzsony, T., & Stannarius, R., 2017, “Outflow and clogging of shape-anisotropic grains in hoppers with small apertures,” Soft Matter, Vol. 13(2), pp. 402-414.
[7] Lopez-Rodriguez, D., Gella, D., To, K., Maza, D., Garcimartin, A., & Zuriguel, I., 2019, “Effect of hopper angle on granular clogging,” Physical Review E, Vol. 99(3), 032901.
[8] To, K., Yen, Y., Mo, Y. K., & Huang, J. R., 2019, “Granular flow from silos with rotating orifice,” Physical Review E, Vol. 100(1), 012906.
[9] Hsiau, S. S., Hsu, C. C., & Smid, J., 2009, “The discharge of fine silica sands in a silo,” Physics of Fluids, Vol. 22(4), 043306.
[10] Hsiau, S. S., Liao, C. C., & Lee, J. H., 2012, “The discharge of fine silica sand in a silo under different ambient air pressure,” Physics of Fluids, Vol. 24(4), 043306.
[11] To, K. W., & Tai, H. T., 2017, “Flow and clog in a silo with oscillating exit,” Physical Review E, Vol. 96(3), 032906.
[12] Lozano, C., Zuriguel, I., & Garcimartin, A., 2015, “Stability of clogging arches in a silo submitted to vertical vibrations,” Physical Review E, Vol. 91(6), 062203.
[13] Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R. C., Garcimartin, A., 2012, “Breaking Arches with Vibrations: The Role of Defects,” Physical Review Letters, Vol. 109(6), 068001.
[14] Zuriguel, I., Janda, A., Garcimartin, A., Lozano, C., & Arevalo, R., 2011, “Silo Clogging Reduction by the Presence of an Obstacle,” Physical Review E, Vol. 98(2), 278001.
[15] Endo, K., Reddy, K. A., & Katsuragi, H., 2017, “Obstacle-shape effect in a two-dimensional granular silo flow field,” Physical Review Fluids, Vol. 2(9), 094302.
[16] Sperl, M., 2006, “Experiments on corn pressure in silo cells-translation and comment of Jassen’s paper from 1895,” Granular Matter, Vol. 8(2), pp. 59-65.
[17] Madrid, M. A., & Pugnaloni, L. A., 2019, “Velocity profiles in forced silo discharges,” Granular Matter, Vol. 21(3), 76.
[18] Hidalgo, R. C., Lozano, C., Zuriguel, I., & Garcimartin, A., 2013, “Force analysis of clogging arches in a silo,” Granular Matter, Vol. 15(6), pp. 841-848.
[19] Beverloo, W. A., Leniger, H. A., & van de Velde, J., 1961, “The flow granular solids through orifice,” Chemical Engineering Science, Vol. 15(3-4), pp. 260-269.
[20] Williams, J. C., 1977, “The rate of discharge of coarse granular materials from conical mass flow hoppers,” Chemical Engineering Science, Vol. 32(3). pp. 247-255.
[21] Janda, A., Zuriguel, I., & Maza, D., 2012, “Flow Rate of Particles through Apertures Obtained from Self-Similar Density and Velocity Profiles,” Physical Review Letters, Vol. 108(24), 248001.
[22] Zaki, M., & Siraj, M. S., 2019, “Study of a flat-bottomed cylindrical silo with different orifice shapes,” Powder Technology, Vol. 354, pp. 641-652.
[23] Fullard, L. A., Breard, E. C. P., Davies, C. E., Godfrey, A. J. R., Fukuoka, M., Wade, A., Dufek, J., & Lube, G., 2019, “The dynamics of granular flow from a silo with two symmetric openings,” Proceedings of The Royal Society A-Mathematical Physical and Engineering Sciences, Vol. 475(2221), 20180462.
[24] Kanath, S., Kunte, A., Doshi, P., & Orpe, A. V., 2014, “Flow of granular matter in a silo with multiple exit: Jamming to mixing,” Physical Review E, Vol. 90(6), 062206.
[25] Zuriguel, I., Maza, D., Janda, A., Hidalgo, R. C., & Garcimartin, A., 2019, “Velocity fluctuations inside two and three dimensional silos,” Granular Matter, Vol. 21(3).
[26] Samadani, A., Pradhan, A., & Kudrolli, A., 1999, “Size segregation of granular matter in silo discharges,” Physical Review E, Vol. 60(6).
[27] Garcimartin, A., Zuriguel, I., Pugnaloni, L. A., & Janda, A., 2010, “Shape of jamming arches in two-dimensional deposits of granular materials,” Physical Review E, Vol. 82(3), 031306.
[28] Reddy, A. V. K., Kumar, S., Reddy, K. A., & Talbot, J., 2018, “Granular silo flow of inelastic dumbbells: Clogging and its reduction,” Physical Review E, Vol. 98(2), 022904.
[29] Lozano, C., Janda, A., Garcimartin, A., Maza, D., & Zuriguel, I., 2012, “Flow and clogging in a silo with an obstacle above the orifice,” Physical Review E, Vol. 86(3), 031306.
[30] Janda, A., Zuriguel, I., Garcimartin, A., Pugnaloni, L. A., & Maza, D., 2008, “Jamming and critical outlet size in the discharge of a two-dimensional silo,” Europhysics Letters, Vol. 84(4), 44002.
[31] Ostu, N., 1979, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 9(1), pp.62–66.
[32] Staron, L., Lagree, PY., Popinet, S., 2012, “The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra,” Physical of Fluids, Vol. 24(10), 103301.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明