博碩士論文 108323086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.214.216.26
姓名 李柏廷(Bo-Ting Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 DOpIm:擴散光學造影軟體系統
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-31以後開放)
摘要(中) 擴散光學斷層造影(diffuse optical tomography, DOT),即將近紅外光進入組織中,由光偵測器蒐集光資訊,進行光學係數分佈影像重建。進行影像重建時,分為前向計算與逆向反算兩個部分。前向計算藉擴散方程式呈現光在組織的傳遞情形,獲得不同位置的光資訊;逆向反算則通過牛頓法進行疊代,利用最小化量測資料與前向計算的差值,重建組織光學係數分佈,進行腫瘤大小及位置的判斷。逆向反算中,由於擴散係數遠大於吸收係數,導致吸收係數主導重建圖像,故需加入正規化項,平衡兩光學係數之數量級,使吸收係數不會主導重建;同時逆向反算中具有病態特性,故需加入正則化項穩定重建結果。
為了要方便執行影像重建,故本論文將分別整合實驗室現有的DOT、FDOT影像重建程式並設計使用者介面,方便後人在進行影像重建時使用;也在多波長組合挑選的程式中設計使用者介面,以便依組織組成濃度,從不同波長光源中挑選最佳的波長組合。
1) 軟體改進方面:
在軟體改進方面,分別改善網格中光源與光偵測器位置的判斷;修改原三維多頻率光資訊影像重建程式,找前向計算與量測資料的實數與虛數部分差異時的計算錯誤;增加依仿體輪廓進行一維等比例剖面呈現影像重建結果的方式。
2) 軟體驗證方面:
DOT部分以圓柱、半橢球仿乳和不規則形仿體驗證,確認本軟體在使用單頻率與多頻率光資訊進行二維與三維影像重建的能力。FDOT部分使用圓形仿體驗證,確認本軟體影像重建的能力。多波長組合挑選參考女性乳房組織組成濃度,作為驗證本軟體在市售波長挑選多波長光源組合時的依據。
摘要(英) Diffuse optical tomography (DOT), in which laser light enters the tissue, and the light information is collected by detector. There are two parts in the image reconstruction: forward calculation and inverse reconstruction. The forward calculation uses the diffusion equation to present the light transmission in the tissue and obtain the light information at different positions; the inverse reconstruction is to iterate through the Newton method, and the distribution of optical coefficients in tissue is reconstructed by minimizing the difference between the measured data and the forward calculation to determine the tumor size and location. However, in the inverse reconstruction, since the diffusion coefficient is much larger than the absorption coefficient, the absorption coefficient dominates the reconstructed image. Therefore, it is necessary to add a normalization term to balance the two optical coefficients to prevents the reconstruction from being dominated by the absorption coefficient; at the same time, due to the ill-conditioned of the inverse reconstruction, a regularization term needs to be added to stabilize the reconstruction result.
In order to make image reconstruction more convenient, in this paper we integrate the existing DOT and FDOT image reconstruction programs in the lab and design the user interface to facilitate the image reconstruction by future users; it is also designed and used in the program for multi-wavelength combination selection. The user interface is also designed in the multi-wavelength combination selection program to select the best wavelength combination from different wavelength light sources.
1) Software improvements:
The way of determine source and detector position in the mesh was improved; modify the error in the original 3D multi-frequency image reconstruction program when finding real and imaginary parts of the difference between forward calculation and measurement data; add the way to present the image reconstruction results in a one-dimensional equal scale profile according to the contour of the phantom.
2) Software verification:
In the DOT section, cylindrical, semi-ellipsoidal breast-liked and irregular-shaped phantoms were used to verify the ability of this program to perform 2D and 3D image reconstruction using single-frequency and multi-frequency light information. In the FDOT section, circular phantoms were used to verify this program image reconstruction ability; In the multi-wavelength combination selection, the concentration of female breast tissue composition was used to verify the program′s ability to select multi-wavelength light source combinations from commercially available wavelengths.
關鍵字(中) ★ 擴散光學斷層造影
★ 有限元素法
★ 腫瘤特徵辨識
★ 影像重建
★ 影像評估
關鍵字(英) ★ diffuse optical tomography
★ finite element method
★ identification of tumor
★ image reconstruction
★ quantitative evaluation of image
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究動機與目的 1
1-2 乳房組織光學特性與醫學影像造影 2
1-2-1 乳房組織光學特性 2
1-2-2 醫學影像造影 4
1-3 文獻回顧 5
1-3-1 光資訊量測與數值計算 5
1-3-2 實驗室先前基礎 7
1-3-3 當前DOT影像重建軟體 9
1-4 論文架構 9
第二章 理論基礎 11
2-1 擴散光學理論 11
2-1-1 擴散方程式 11
2-1-2 螢光擴散方程式 13
2-1-3 波長組合最佳化 13
2-1-4 邊界條件 15
2-2 前向計算 15
第三章 影像重建逆向問題 19
3-1 Jacobian矩陣 19
3-2 Jacobian正規化(normalization) 22
3-3 逆向問題正則化(regularization) 22
3-3-1 Tikhonov正則化 22
3-3-2 Edge-preserving正則化 23
第四章 影像重建軟體DOpIm 25
4-1 軟體介面、功能與架構 25
4-1-1 DOT介面與功能 26
4-1-2 FDOT介面與功能 33
4-1-3 多波長光源組合挑選介面與功能 38
4-2 輸入資料排列 40
4-2-1 實驗資料排列 40
4-2-2 網格資料排列 41
第五章 影像重建軟體驗證 42
5-1 仿體驗證規則 42
5-2 二維影像重建 46
5-2-1 Tikhonov正則化-單頻率光資訊 46
5-2-2 Tikhonov正則化-多頻率光資訊 51
5-2-3 Edge-preserving正則化 51
5-3 三維影像重建 52
5-3-1 Tikhonov正則化-單頻率光資訊 52
5-3-2 Tikhonov正則化-多頻率光資訊 54
5-4 FDOT二維影像重建 55
5-5 多波長組合挑選 57
第六章 結論與未來展望 59
6-1 結論 59
6-2 未來展望 59
參考文獻 60
參考文獻 [1] 國民健康署,癌症登記報告,中華民國衛生福利部,2004-2018
[2] 台灣癌症防治網. "認識乳癌-乳癌的分類." 財團法人台灣癌症臨床研究發展基金會. http://web.tccf.org.tw/lib/addon.php?act=post&id=4383
(accessed.
[3] 黃其晟. "如何預防乳癌復發." https://www.cgh.org.tw/ec99/rwd1320/category.asp?category_id=948 (accessed.
[4] E. Vandeweyer and D. Hertens, "Quantification of glands and fat in breast tissue: an experimental determination," Annals of Anatomy-Anatomischer Anzeiger, vol. 184, no. 2, pp. 181-184, 2002.
[5] H. Woodard and D. White, "The composition of body tissues," The British journal of radiology, vol. 59, no. 708, pp. 1209-1218, 1986.
[6] 香港生育康健中心, "乳房的構造," ed.
[7] G. Satat, "Imaging through scattering," Massachusetts Institute of Technology, 2015.
[8] M. Herranz and A. Ruibal, "Optical imaging in breast cancer diagnosis: the next evolution," Journal of oncology, vol. 2012, 2012.
[9] A. Cerussi et al., "Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proceedings of the National Academy of Sciences, vol. 104, no. 10, pp. 4014-4019, 2007.
[10] J. G. Elmore, K. Armstrong, C. D. Lehman, and S. W. Fletcher, "Screening for breast cancer," Jama, vol. 293, no. 10, pp. 1245-1256, 2005.
[11] T. Nagashima et al., "Ultrasound demonstration of mammographically detected microcalcifications in patients with ductal carcinoma in situ of the breast," Breast cancer, vol. 12, no. 3, pp. 216-220, 2005.
[12] V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nature biotechnology, vol. 23, no. 3, pp. 313-320, 2005.
[13] F. Scholkmann et al., "A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology," Neuroimage, vol. 85, pp. 6-27, 2014.
[14] K. Uludağ, J. Steinbrink, A. Villringer, and H. Obrig, "Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head," Neuroimage, vol. 22, no. 2, pp. 583-589, 2004.
[15] H. Y. Wu, A. Filer, I. Styles, and H. Dehghani, "Development of a multi-wavelength diffuse optical tomography system for early diagnosis of rheumatoid arthritis: simulation, phantoms and healthy human studies," Biomedical Optics Express, vol. 7, no. 11, pp. 4769-4786, 2016.
[16] S. R. Arridge and W. R. Lionheart, "Nonuniqueness in diffusion-based optical tomography," Optics letters, vol. 23, no. 11, pp. 882-884, 1998.
[17] A. Corlu et al., "Diffuse optical tomography with spectral constraints and wavelength optimization," Applied Optics, vol. 44, no. 11, 2005, doi: 10.1364/ao.44.002082.
[18] A. Corlu et al., "Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography," Optics letters, vol. 28, no. 23, pp. 2339-2341, 2003.
[19] X. Intes and B. Chance, "Multi-frequency diffuse optical tomography," Journal of Modern Optics, vol. 52, no. 15, pp. 2139-2159, 2005.
[20] M. B. Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, "Diffuse optical tomographic reconstruction using multifrequency data," Journal of Biomedical Optics, vol. 11, no. 5, p. 054008, 2006.
[21] C. Chen, V. C. Kavuri, X. Wang, R. Li, H. Liu, and J. Huang, "Multi-frequency diffuse optical tomography for cancer detection," in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015: IEEE, pp. 67-70.
[22] M. Schweiger and S. R. Arridge, "Comparison of two-and three-dimensional reconstruction methods in optical tomography," Applied optics, vol. 37, no. 31, pp. 7419-7428, 1998.
[23] H. Jiang, "Three-dimensional optical image reconstruction: Finite element approach," in Advances in Optical Imaging and Photon Migration, 1998: Optical Society of America, p. ATuC3.
[24] H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, "Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results," Applied Optics, vol. 42, no. 1, pp. 135-145, 2003.
[25] T. O. McBride, Spectroscopic reconstructed near infrared tomographic imaging for breast cancer diagnosis. Doctoral thesis of Dartmouth College, 2001.
[26] Y. Xu, X. Gu, T. Khan, and H. Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Applied optics, vol. 41, no. 25, pp. 5427-5437, 2002.
[27] M. E. Eames and H. Dehghani, "Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction," Optics express, vol. 16, no. 22, pp. 17780-17791, 2008.
[28] H. Niu, P. Guo, L. Ji, Q. Zhao, and T. Jiang, "Improving image quality of diffuse optical tomography with a projection-error-based adaptive regularization method," Optics express, vol. 16, no. 17, pp. 12423-12434, 2008.
[29] H.-J. Sun and W.-C. Fang, "An improved diffuse optical tomography image reconstruction based on sparse recovery method," in 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 2016: IEEE, pp. 1-2.
[30] J. Prakash, C. B. Shaw, R. Manjappa, R. Kanhirodan, and P. K. Yalavarthy, "Sparse recovery methods hold promise for diffuse optical tomographic image reconstruction," IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 2, pp. 74-82, 2013.
[31] L.-Y. Chen, M.-C. Pan, and M.-C. Pan, "Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography," Applied optics, vol. 51, no. 1, pp. 43-54, 2012.
[32] L.-Y. Chen, "Reconstruction and Evaluation of Diffuse Optical Imaging," Doctoral thesis of National Central University, 2013.
[33] M. Schweiger and S. Arridge, "Optical tomographic reconstruction in a complex head model using a priori region boundary information," Physics in medicine & biology, vol. 44, no. 11, p. 2703, 1999.
[34] B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, "Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities," IEEE Journal of selected topics in quantum electronics, vol. 9, no. 2, pp. 199-209, 2003.
[35] P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, "Structural information within regularization matrices improves near infrared diffuse optical tomography," Optics Express, vol. 15, no. 13, pp. 8043-8058, 2007.
[36] P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, "Weight‐matrix structured regularization provides optimal generalized least‐squares estimate in diffuse optical tomography," Medical physics, vol. 34, no. 6Part1, pp. 2085-2098, 2007.
[37] A. B. Milstein et al., "Fluorescence optical diffusion tomography," Applied Optics, vol. 42, no. 16, pp. 3081-3094, 2003.
[38] 林孟隆,「開發超音波結構影像為基礎之小動物腫瘤螢光擴散光學斷層掃描術」,碩士論文,國立陽明大學醫學工程研究所,2014。
[39] A. B. Milstein et al., "Fluorescence optical diffusion tomography using multiple-frequency data," JOSA A, vol. 21, no. 6, pp. 1035-1049, 2004.
[40] A. Corlu et al., "Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans," Optics Express, vol. 15, no. 11, pp. 6696-6716, 2007/05/28 2007, doi: 10.1364/OE.15.006696.
[41] Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Physics in Medicine & Biology, vol. 52, no. 18, p. 5569, 2007.
[42] L.-Y. Chen, M.-C. Pan, and M.-C. Pan, "Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization," Applied optics, vol. 52, no. 6, pp. 1173-1182, 2013.
[43] 游釗銘,「頻域式擴散光學造影之乳房掃描暨量測系統研究」,博士論文,國立中央大學光機電工程研究所,2015。
[44] 劉沛霆,「外型輪廓順應量測之擴散光學成像比較研究」,碩士論文,國立中央大學光機電工程研究所,2020。
[45] 甘弘暐,「多頻率同步驅動光源之三維頻域式擴散光學斷層造影數值計算研究」,碩士論文,國立中央大學機械工程學系,2020。
[46] 許彥揚,「多頻同步驅動光源之頻域式擴散光學造影研究」,碩士論文,國立中央大學生醫科學與工程學系,2020。
[47] 嚴中成,「三維近紅外光擴散光學斷層影像重建之數值計算研究」,碩士論文,國立中央大學機械工程學系,2016。
[48] V. V. H. Mudeng, "Computation of Three-Dimensional Diffuse Optical Image Reconstruction with Arbitrary Surface Models," 碩士論文, 國立中央大學光機電工程研究所, 2017.
[49] 蘇初日,「螢光斷層造影技術與仿體驗證研究」,碩士論文,國立中央大學生物醫學工程研究所,2017。
[50] L.-Y. Chen, M.-C. Pan, and M.-C. Pan, "Fluorescence Diffuse Optical Imaging: Simulation," proceedings of Optic 2016, 2016.
[51] L.-Y. Chen, M.-C. Pan, C.-C. Yan, and M.-C. Pan, "Wavelength optimization using available laser diodes in spectral near-infrared optical tomography," Applied optics, vol. 55, no. 21, pp. 5729-5737, 2016.
[52] L.-Y. Chen, M.-C. Pan, and M.-C. Pan, "Visualized numerical assessment for near infrared diffuse optical tomography with contrast-and-size detail analysis," Optical review, vol. 20, no. 1, pp. 19-25, 2013.
[53] M.-C. Pan, C.-H. Chen, L.-Y. Chen, M.-C. Pan, and Y.-M. Shyr, "Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images," Journal of biomedical optics, vol. 13, no. 2, p. 024022, 2008.
[54] H. Dehghani et al., "Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction," Communications in numerical methods in engineering, vol. 25, no. 6, pp. 711-732, 2009.
[55] M. Schweiger and S. R. Arridge, "The Toast++ software suite for forward and inverse modeling in optical tomography," Journal of biomedical optics, vol. 19, no. 4, p. 040801, 2014.
[56] L. V. Wang and H.-i. Wu, Biomedical optics: principles and imaging. John Wiley & Sons, 2012.
[57] E. Ambrocio, "A Self-Consistent Obstacle Scattering Theory for the Diffusion Approximation of the Radiative Transport Equation," Applied Mathematics. University of California, Merced. Master of Science, 2008.
[58] 曾士育、郭俊言、鄭南玉和曾盛豪,「簡介漫反射光譜學-光學穿戴式生理監控裝置之核心技術」(in 繁體中文),科儀新知,no. 224,pp. 37-54,2020。
[59] K. D. Paulsen and H. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Medical Physics, vol. 22, no. 6, pp. 691-701, 1995.
[60] S. R. Arridge, "Optical tomography in medical imaging," Inverse problems, vol. 15, no. 2, p. R41, 1999.
[61] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging," IEEE Transactions on image processing, vol. 6, no. 2, pp. 298-311, 1997.
指導教授 潘敏俊 審核日期 2022-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明