博碩士論文 108323107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.149.230.44
姓名 王聖鈞(Sheng-Jun Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 實體網格建構對於塑膠光學元件模流分析 之影響探討
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 螺槳葉片逆向工程CAD模型重建與檢測
★ 電腦輔助紋理影像辨識與點資料視覺化研究★ 渦輪轉子CAD模型重建、多軸加工路徑模擬與誤差分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在光學產業中,射出成型在塑膠光學元件的應用非常普遍,有關光學元
件之模具設計、成型分析、製程參數設定等,模流分析可以提供很有效的幫
助。近年來,由於光學產品精度的要求日益增高,對於模流分析準確率的要
求也隨之提升。網格建構影響模流分析結果甚鉅,雖然模流分析軟體已提供
半自動方式的網格建構方法,然而使用的網格以四面體或 BLM 網格(表層
六面體、內層四面體網格)為主,對於塑料流動狀況的模擬仍非很準確。因
此,本研究的目的以手動方式探討網格搭建對於模流分析的影響,以光學套
筒與光學鏡片之模流分析為範例。前者以流道之流動不平衡現象的探討為
主,透過混合式網格的搭建,正確模擬流道之流動不平衡,並與 BLM 網格
之模擬結果比較。後者以鏡片流動波前模擬之探討為主,探討不同混合式網
格之組合,對於流動波前模擬之影響,並以三種不同輪廓形狀之光學鏡片,
分別建立合適之網格建構模式。本研究分別使用三種光學套筒與三個光學
鏡片之短射成型成品,用以確認所擬混合式網格建構方法的可行性。
摘要(英) In optical industry, injection molding is commonly used for the manufacturing of
plastic optical components. Mold flow analysis (MFA) can help the mold design,
process analysis and parameter setting in injection molding. As the demand on the
quality of optical components is increased, so is the accuracy required in mold
flow analysis. In mold flow analysis, a CAD model must be converted into solid
meshes first. Although semi-automatic mesh generation modules are available in
MFA software, most of the meshes are tetrahedral or BLM types, which are not
accurate enough for the application in optical industry. Therefore, the purpose of
this study is to study the feasibility of applying hybrid meshes to improve the
mold flow analysis for two kinds of optical components, including optical sleeves
and optical lens. For optical sleeves, the primary goal is to study the flow
imbalance on runners. A hybrid mesh combining hexahedral and BLM meshes is
employed to truly model the flow imbalance on the runner, if it exists. The result
is compared with that using pure BLM mesh, demonstrating that the proposed
hybrid mesh is better than BLM mesh. For optical lens, the primary goal is to
model the wave front of the flow during the injecting stage. A mesh generation
method is proposed to generate hybrid meshes for different kinds of optical lens.
To verify the accuracy of the proposed meshing method, three optical sleeves and
three optical lens are individually studied. The short shot of each component is
compared with the result of mold flow analysis, which demonstrates the feasibility
of the proposed meshing method for each case.
關鍵字(中) ★ 射出成型
★ 模流分析
★ 混合式網格
★ 光學產品
關鍵字(英) ★ Injection molding
★ Mold flow analysis
★ Hybrid mesh
★ , Optical products
論文目次 目錄
摘要........................................................................................................................i
Abstract .................................................................................................................ii
致謝......................................................................................................................iii
目錄......................................................................................................................iv
圖目錄.................................................................................................................vii
表目錄................................................................................................................... x
第一章 緒論......................................................................................................... 1
1.1 前言........................................................................................................ 1
1.2 文獻回顧................................................................................................ 2
1.3 研究目的與方法.................................................................................... 5
1.3.1 研究目的..................................................................................... 5
1.3.2 研究方法..................................................................................... 7
1.4 論文架構................................................................................................ 8
第二章................................................................................................................... 9
實體網格建構與其在光學元件模流分析的重要性........................................... 9
2.1 前言........................................................................................................ 9
2.2 Moldex3D 模流分析流程與參數設定 .................................................. 9
2.2.1 塑化參數.................................................................................... 10
2.2.2 充填參數.................................................................................... 14
2.2.3 保壓參數.................................................................................... 17
2.2.4 冷卻參數.................................................................................... 17
2.3 實體網格型式與網格品質指標........................................................... 20
2.3.1 實體網格型式........................................................................... 20
2.3.2 網格品質定義........................................................................... 23
v
2.4 Moldex3D 中之實體網格建構方式 .................................................... 27
2.4.1 邊上灑點.................................................................................... 29
2.4.2 表面網格.................................................................................... 29
2.4.3 實體網格.................................................................................... 32
2.5 常用網格建構方式於光學元件模擬之侷限性.................................. 33
第三章 光學套筒實體網格建構與模流分析................................................... 39
3.1 前言...................................................................................................... 39
3.2 光學套筒混合式網格建構方式.......................................................... 39
3.2.1 網格建構前處理........................................................................ 39
3.2.2 光學套筒流道混合式網格建構方式....................................... 40
3.2.3 光學套筒網格建構................................................................... 48
3.3 成型條件與參數.................................................................................. 48
3.4 模流分析結果與射出成品比對.......................................................... 50
3.4.1 範例 A........................................................................................ 54
3.4.2 範例 B........................................................................................ 61
3.4.3 範例 C........................................................................................ 61
第四章 光學鏡片實體網格建構與模流分析................................................... 71
4.1 前言...................................................................................................... 71
4.2 光學鏡片混合式網格建構方式.......................................................... 72
4.2.1 光學鏡片前處理....................................................................... 72
4.2.2 光學鏡片流道混合式網格建構方式....................................... 72
4.2.3 光學鏡片 BLM 網格建構尺寸探討......................................... 77
4.2.4 光學鏡片混合式網格建構方式............................................... 77
4.3 光學鏡片參數設定.............................................................................. 82
4.4 模流分析結果與射出成品比對.......................................................... 92
vi
第五章 結論與未來展望................................................................................... 96
5.1 結論...................................................................................................... 96
5.2 未來展望............................................................................................... 97
參考文獻............................................................................................................. 99
參考文獻 [1] T. Sorgente, S. Biasotti, M. Livesu and M. Spagnuolo, “ Topology-driven shape chartification”, Computer Aided Geometric Design, Vol. 65, pp. 13-28, 2018.
[2] J. Gregson, A. Sheffer and E. Zhang, “All‐hex mesh generation via volumetric polycube deformation”, Computer Graphics Forum, Vol. 30, No. 5, pp. 1407-1416, 2011.
[3] D. Bommes, T. Lempfer and L. Kobbelt, “Global structure optimization of quadrilateral meshes”, Computer Graphics Forum, Vol. 30, No. 2, pp. 375-384, 2011.
[4] A.O. Cifuentes and A.Kalbag, “A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis”, Finite Elements in Analysis and Design, Vol. 12, pp. 313-318, 1992.
[5] T. Jiang, J. Huang, Y. Wang, Y. Tong and H. Bao, “Frame field singularity correctionfor automatic hexahedralization”, IEEE Transactions on Visualization and Computer Graphics, Vol. 20, pp. 1189-1199, 2013.
[6] Y. Zhang, C. Bajaj and G. Xu, “Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow”, Communications in Numerical Methods in Engineering,Vol. 25, pp. 1-18, 2009.
[7] N.J. Harris, S.E. Benzley and S.J Owen, “Conformal refinement of all-hexahedral element meshes based on multiple twist plane insertion”, IMR, pp. 157-168, 2004
[8] R. Schneiders, “Octree-based hexahedral mesh generation”, International Journal of Computational Geometry & Applications, Vol. 10, No. 04, pp. 383-398, 2000.
[9] T.S. Li, R.M. McKeag and C.G Armstrong, “Hexahedral meshing using midpoint subdivision and integer programming”, Computer methods in applied mechanics and engineering, Vol. 124, No.1, pp. 171-193,1995.
[10] R. Schneiders and R. Bünten, “Automatic generation of hexahedral finite element meshes”, Computer Aided Geometric Design, Vol. 12, No. 7, pp. 693-707,1995.
[11] R. Y.Chang, D. C .Hsu, V. Yang and W. H. Yang, “Three-dimensional computer-aided mold cooling design for injection molding”, Antec-Conference Proceedings, Vol. 1, pp. 656-660, 2003.
[12] S. W. Kim and L. S. Turng, “Developments of three-dimensional computer-aided engineering simulation for injection moulding”, Modelling and Simulation in Materials Science and Engineering, Vol. 12, No. 3, pp. 151-173, 2004.
[13] W. Li, Y. F.Jin, X. Lv and C.H. Kua, “A study on computer simulation of plastic lens molding process”, Materials Science Forum , Vol. 471, pp. 490-493, 2004.
[14] U. Greis and G. Kirchhof,. “Injection molding of plastic optics”, Optical Surface Technology , Vol. 381, pp. 69-77, 1983.
[15] 劉智豪,「光學鏡片模具設計製造與射出成型最佳化研究」,國立中央大學,碩士論文,民國104年。
[16] Moldex3D, Website: http://www.moldex3d.com/en/, Accessed 4 June 2021
[17] 陳夏宗、李海梅、周文祥和陳清祺主編,射出成型原理與製程,五南出版社,2014。
[18] 王茂齡、張榮語和許嘉翔主編,模流分析理論與實務,科盛科技股份有限公司,2018。
[19] 蔡明宏、楊文禮,幾何平衡流道系統的流動不平衡問題與模具流道設計最新專利技術,科盛科技股份有限公司,2003。
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明