博碩士論文 108324002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.144.27.167
姓名 徐瑋(WEI HSU)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可撓曲銀/矽單晶奈米孔洞通道陣列之製備及其近紅外光感測特性之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗結合貴金屬催化蝕刻法及鹼性蝕刻法,在低成本的條件下,快速製備出超薄型可撓曲式矽晶元件,除此之外,更進一步的利用自組裝奈米球微影術結合光輔助電化學蝕刻法製備出大面積且尺寸可調控之矽單晶奈米孔洞通道結構陣列,此結構顯示出於可見光波段具有高的光吸收能力,並額外再透過無電鍍沉積法成功還原銀奈米金屬顆粒於奈米結構內部以及表面,使其可產生表面電漿共振之效應,以拓展光吸收之範圍至近紅外光波段。在元件的製程中,本實驗首先於較厚之矽晶基材上開發出具良好光感測性能之元件,電極的製備使用高真空濺鍍系統於試片背面鍍製鋁金屬薄膜作為歐姆接觸之電極,而正面電極則依靠無電鍍沉積法所還原之銀奈米顆粒做為蕭基接觸之電極。以940 nm近紅外光照射銀/矽蕭基接面結構光感測器並量測其光響應度、靈敏度及響應時間,最後再將具有最優異性質之元件製備條件直接與可撓曲矽單晶基材整合。
摘要(英) This experiment combines the noble metal catalytic etching method and the alkaline etching method to quickly fabricate ultra-thin flexible silicon crystal components under low-cost conditions. In addition, further use of self-assembled nanosphere lithography combined with photo-assisted electrochemical etching, a large-area and adjustable-size silicon single-crystal nano-hole channel structure array is prepared. This structure shows that it has high light absorption capacity in the visible light band, and is additionally successfully deposited by electroless deposition. Reduce the silver nano metal particles inside and on the surface of the nano structure, so that it can produce the effect of surface plasmon resonance to expand the range of light absorption to the near-infrared light band. In the manufacturing process of the device, this experiment first developed a device with good light sensing performance on a thicker silicon crystal substrate. The preparation of the electrode used a high vacuum sputtering system to deposit an aluminum metal film on the back of the test piece as the ohmic contact. The electrode, and the front electrode relies on the silver nano particles reduced by the electroless deposition method as the electrode of the Schottky contact. The silver/silicon Schottky junction structure light sensor was irradiated with 940 nm near-infrared light and its light responsivity, sensitivity and response time were measured. Finally, the preparation conditions of the most excellent device were directly matched with the flexible silicon unit. Crystal substrate integration.
關鍵字(中) ★ 矽基近紅外光感測元件
★ 蕭基光感測元件
★ 矽單晶奈米孔洞通道陣列
★ 無電鍍沉積銀奈米顆粒
★ 可撓曲光感測元件
★ 矽晶基材薄化製程
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1 前言 1
1-2 一維矽單晶奈米結構 3
1-2-1 一維矽單晶奈米結構之應用 3
1-2-2 一維矽單晶奈米孔洞通道之製備 4
1-3 超薄型可撓曲式矽晶感測元件 6
1-3-1 超薄型可撓曲式元件之應用 6
1-3-2 超薄型可撓曲式矽單晶基材之薄化製程 7
1-4 金屬奈米材料之特性 9
1-5 光感測元件 11
1-5-1 半導體與金屬接觸理論及蕭基接面之光感測機制 11
1-5-2 紅外線光感測器 13
1-6 研究動機及目標 15
第二章 實驗步驟及儀器設備 17
2-1 規則有序且準直排列之尺寸可調控矽單晶奈米孔洞通道陣列結構 17
2-1-1 自組裝奈米球模板陣列製備 17
2-1-2 鹼性溶液蝕刻法調控矽單晶奈米倒金字塔陣列尺寸 18
2-1-3 光輔助電化學蝕刻法製備矽單晶奈米孔洞通道 18
2-2 無電鍍沉積金屬銀奈米顆粒 19
2-3 超薄型可撓曲式矽單晶元件製備 19
2-3-1 矽晶基材使用前處理 19
2-3-2 貴金屬催化蝕刻法快速薄化矽單晶基材至可撓曲厚度 20
2-3-3 鹼性蝕刻法修飾矽單晶基材表面粗糙度 20
2-4 濺鍍金屬鋁薄膜 21
2-5 製備光感測元件 21
2-6 試片分析 21
2-6-1 掃描式電子顯微鏡 21
2-6-2 可見光-近紅外光譜儀 22
2-6-3 近紅外光偵測系統 23
2-6-4 影像式水滴接觸角量測儀 23
第三章 結果與討論 25
3-1 矽單晶奈米孔洞通道結構陣列 25
3-1-1 單層自組裝奈米球模板陣列製備 25
3-1-2 奈米球微影術結合濕式化學蝕刻法製備矽單晶奈米倒金字塔陣列 27
3-1-3 光輔助電化學蝕刻法製備矽單晶奈米孔洞通道陣列 28
3-1-4 可見近紅外光積分球光譜儀分析 36
3-1-5 水滴接觸角量測分析 39
3-2 銀/矽單晶奈米孔洞通道結構 40
3-2-1 無電鍍沉積金屬銀奈米顆粒 40
3-2-2 可見光-近紅外光積分球光譜儀分析 42
3-3 近紅外光偵測元件 45
3-3-1 銀/矽單晶奈米孔洞通道結構之蕭基接面製備 45
3-3-2 銀/矽單晶奈米孔洞通道蕭基接面結構之近紅外光光感測特性與探討 47
3-3-3 光感測元件之靈敏度、響應度以及響應時間 50
3-4 可撓曲銀/矽單晶奈米孔洞通道結構陣列 52
3-4-1 超薄型可撓曲式矽單晶基材製備 52
3-4-2 可見光-近紅外光積分球光譜儀分析 54
3-4-3 可撓曲式光感測元件之靈敏度、響應度以及響應時間 56
第四章 結論與未來展望 58
參考文獻 60
表目錄 69
圖目錄 71
參考文獻 [1] S. Lin, Y. Lu, S. Feng, Z. Hao, Y. Yan, "A high current density direct-current generator based on a moving van der waals schottky diode," Advanced Materials Interfaces, 31 (2019) 1804398.
[2] T. Kennedy, M. Brandon, F. Laffir, K. M. Ryan, "Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes," Journal of Power Sources, 359 (2017) 601.
[3] B. Miao, J. Zhang, X. Ding, D. Wu, Y. Wu, W. Lu, J. Li, "Improved metal assisted chemical etching method for uniform, vertical and deep silicon structure," Journal of Micromechanics and Microengineering, 27 (2017) 055019.
[4] Y. Chen, S. Aslanoglou, T. Murayama, G. Gervinskas, L. I. Fitzgerald, S. Sriram, J. Tian, A. P. R. Johnston, Y. Morikawa, K. Suu, R. Elnathan, N. H. Voelcker, "Silicon-nanotube-mediated intracellular delivery enables ex vivo gene editing," Adv Mater, 32 (2020) 2000036.
[5] S. Lv, Z. Li, S. Su, L. Lin, Z. Zhang, W. Miao, "Tunable field emission properties of well-aligned silicon nanowires with controlled aspect ratio and proximity," RSC Advances, 4 (2014) 31729.
[6] S. Chandrasekaran, T. Nann, N. H. Voelcker, "Nanostructured silicon photoelectrodes for solar water electrolysis," Nano Energy, 17 (2015) 308.
[7] A. Casimir, H. Zhang, O. Ogoke, J. C. Amine, J. Lu, G. Wu, "Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation," Nano Energy, 27 (2016) 359.
[8] T. G. Chen, P. Yu, S. W. Chen, F. Y. Chang, B. Y. Huang, Y. C. Cheng, J. C. Hsiao, C. K. Li, Y. R. Wu, "Characteristics of large-scale nanohole arrays for thin-silicon photovoltaics," Progress in Photovoltaics: Research and Applications, 22 (2014) 452.
[9] N. S. A. Eom, H. B. Cho, Y. Song, W. Lee, T. Sekino, Y. H. Choa, "Room-temperature H2 gas sensing characterization of graphene-doped porous silicon via a facile solution dropping method," Sensors, 17 (2017) 2750.
[10] S. Huang, Q. Wu, Z. Jia, X. Jin, X. Fu, H. Huang, X. Zhang, J. Yao, J. Xu, "Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation," Advanced Optical Materials, 8 (2020) 1901808.
[11] I. Mihalache, A. Radoi, R. Pascu, C. Romanitan, E. Vasile, M. Kusko, "Engineering graphene quantum dots for enhanced ultraviolet and visible light p-Si nanowire-based photodetector," ACS Applied Materials & Interfaces, 9 (2017) 29234.
[12] J. Q. Liu, Y. Gao, G. A. Wu, X. W. Tong, C. Xie, L. B. Luo, L. Liang, Y. C. Wu, "Silicon/Perovskite core-shell heterojunctions with light-trapping effect for sensitive self-driven near-infrared photodetectors," ACS Applied Materials & Interfaces, 10 (2018) 27850.
[13] C. Y. Wu, Z.Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, L. Wang, L. B. Luo, "Core–shell silicon nanowire array–Cu nanofilm schottky junction for a sensitive self-powered near-infrared photodetector," Journal of Materials Chemistry C, 4 (2016) 10804.
[14] S. Nichkalo, A. Druzhinin, A. Evtukh, O. Bratus’, O. Steblova, "Silicon nanostructures produced by modified MacEtch method for antireflective Si surface," Nanoscale Research Letters, 12 (2017) 1.
[15] M. K. Sahoo, P. Kale, "Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review," Journal of Materiomics, 5 (2019) 34.
[16] C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, W. Xie, "Self-powered, high-speed and visible–near infrared response of MoO3-X/n-Si heterojunction photodetector with enhanced performance by interfacial engineering," ACS Applied Materials & Interfaces, 7 (2015) 25981.
[17] L. Chen, W. Tian, L. Min, F. Cao, L. Li, "Si/CuIn0.7Ga0.3Se2 core–shell heterojunction for sensitive and self‐driven UV–vis–NIR broadband photodetector," Advanced Optical Materials, 7 (2019) 1900023.
[18] A. Ghadakchi, Y. Abd, "Reduced graphene oxide/silicon nanowire heterojunction for high sensitivity and broadband photodetector," IEEE Sensors Letters, 3 (2019) 1.
[19] S. E. Han, G. Chen, "Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics," Nano Letters, 10 (2010) 1012.
[20] J. Oh, T. G. Deutsch, H. C. Yuan, H. M. Branz, "Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting.," Energy & Environmental Science, 4 (2011) 1690.
[21] J. Yang, L. Tang, W. Luo, J. Shen, D. Zhou, S. Feng, X. Wei, H. Shi, "Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors," ACS Applied Materials & Interfaces, 11 (2019) 30421.
[22] T. Subramania, C. C. Hsueha, H. Syua, C. T. Liua, S. T. Yangb, C. F. Lin, "Interface modification for efficiency enhancement in silicon nanohole hybrid solar cells," RSC Advances, 6 (2016) 12374.
[23] H. Wang, Z. Zhang, L. M. Wong, S. Wang, Z. Wei, G. P. Li, G. Xing, D. Guo, D. Wang, T. Wu, "Shape-controlled fabrication of micro/nanoscale triangle, square, wire-like, and hexagon pits on silicon substrates induced by anisotropic diffusion and silicide sublimation," ACS Nano, 4 (2010) 2901.
[24] S. C. Shiu, S. C. Hung, H. J. Syu, C. F. Lin, "Fabrication of silicon nanostructured thin film and its transfer from bulk wafers onto alien substrates," Journal of the Electrochemical Society, 158 (2010) D95.
[25] R. Liu, F. Zhang, C. Con, B. Cui, B. Sun, "Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching," Nanoscale Research Letters, 8 (2013) 1.
[26] A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle, U. König, "Random and ordered macropore formation in p-type silicon," Journal of the Electrochemical Society, 149 (2001) G70.
[27] F. A. Harraz, K. Kamada, K. Kobayashi, T. Sakka, Y. H. Ogata, "Random macropore formation in p-type silicon in HF-containing organic solutions," Journal of the Electrochemical Society, 152 (2005) C213.
[28] A. M. Mebed, A. M. Abd-Elnaiem, W. D. Malsche, "Influence of anodizing parameters on the electrochemical characteristics and morphology of highly doped p-type porous silicon," Silicon, 13 (2021) 819.
[29] S. H. Altinoluk, H. E. Ciftpinar, O. Demircioglu, R. Turan, "Periodic micro hole texturing with metal assisted chemical etching for solar cell applications: Dependence of etch rate on orientation," Journal of Materials Science and Nanotechnology, 5 (2017) 102.
[30] L. Kong, Y. Zhao, B. Dasgupta, Y. Ren, K. Hippalgaonkar, X. Li, W. K. Chim, S. Y. Chiam, "Minimizing Isolate catalyst motion in metal-assisted chemical etching for deep trenching of silicon nanohole array," ACS Applied Materials & Interfaces, 9 (2017) 20981.
[31] S. H. Baek, S. Lee, J. H. Bae, C. W. Hong, M. J. Park, H. Park, M. C. Baek, S. W. Nam, "Nanopillar and nanohole fabrication via mixed lithography," Materials Research Express, 7 (2020) 035008.
[32] L. Rahmasari, M. F. Abdullah, A. R. M. Zain, A. M. Hashim, "Silicon nanohole arrays fabricated by electron beam lithography and reactive ion etching," Sains Malaysiana, 48 (2019) 1157.
[33] Y. M. Tseng, R. Y. Gu, C. W. Chang, S. L. Cheng, "Facile fabrication of periodic arrays of vertical Si nanoholes on (001)Si substrate with broadband light absorption properties," Applied Surface Science, 480 (2019) 131.
[34] R. Dahiya, N. Yogeswaran, F. Liu, L. Manjakkal, E. Burdet, V. Hayward, H. Jorntell, "Large-area soft e-skin: The challenges beyond sensor designs," Proceedings of the IEEE, 107 (2019) 2016.
[35] Y. Yang, W. Gao, "Wearable and flexible electronics for continuous molecular monitoring," Chemical Society Reviews, 48 (2019) 1465.
[36] W. Dang, L. Manjakkal, W. T. Navaraj, L. Lorenzelli, V. Vinciguerra, R. Dahiya, "Stretchable wireless system for sweat pH monitoring," Biosensors and Bioelectronics, 107 (2018) 192.
[37] S. Li, Z. Ma, Z. Cao, L. Pan, Y. Shi, "Advanced wearable microfluidic sensors for healthcare monitoring," Small, 16 (2020) 1903822.
[38] Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei, Z. Liu, "Carbon-nanomaterial-based flexible batteries for wearable electronics," Advanced Materials Interfaces, 31 (2019) 800716.
[39] C. Dai, G. Sun, L. Hu, Y. Xiao, Z. Zhang, L. Qu, "Recent progress in graphene‐based electrodes for flexible batteries," InfoMat, 2 (2020) 509.
[40] E. O. Polat, O. Balci, N. Kakenov, H. B. Uzlu, C. Kocabas, R. Dahiya, "Synthesis of large area graphene for high performance in flexible optoelectronic devices," Scientific Reports, 5 (2015) 1.
[41] S. Jeong, M. D. McGehee, Y. Cui, "All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency," Nature Communications, 4 (2013) 1.
[42] J. He, P. Gao, M. Liao, X. Yang, Z. Ying, S. Zhou, J. Ye, Y. Cui, ""Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression," Acs Nano 9(2015) 6522.
[43] J. He, Z. Yang, P. Liu, S. Wu, P. Gao, M. Wang, S. Zhou, X. Li, H. Cao, J. Ye, "Enhanced electro-optical properties of nanocone/nanopillar dual-structured arrays for ultrathin silicon/organic hybrid solar cell applications," Advanced Energy Materials, 6 (2016) 1501793.
[44] X. Wang, H. Zhang, R. Yu, L. Dong, D. Peng, A. Zhang, Y. Zhang, H. Liu, C. Pan, Z. L. Wang, "Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process," Advanced Materials Interfaces, 27 (2015) 2324.
[45] W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan, Y. Shi, "Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires," IEEE Electron Device Letters, 39 (2018) 1069.
[46] C. Kim, H. Ahn, T. Ji, "Flexible pressures ensors based on silicon nanowire array built by metal-assisted chemical etching," IEEE Electron Device Letters, 41 (2020) 1233.
[47] Y. Kumaresan, S. Ma, D. Shakthivel, R. Dahiya, "AlN ultra-thin chips based flexible piezoelectric tactile sensors,"2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), (2021) 1.
[48] Z. Ke, H. Qing, L. Liang, R. Yi, "Study on chemical mechanical polishing of silicon wafer with megasonic vibration assisted," Ultrasonics, 80 (2017) 9.
[49] S. Thiyagu, C. C. Hsueh, C. T. Liu, H. J. Syu, T. C. Linb, C. F. Lin, "Hybrid organic-inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface," Nanoscale, 6 (2014) 3361.
[50] Y. Lv, J. I. Ma, J. Zou, X. Wang, "Research of anisotropic etching in KOH water solution with isopropyl alcohol," IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, (2002).
[51] N. Burham, A. A. Hamzah, B. Y. Majlis, "Effect of isopropyl alcohol (IPA) on etching rate and surface roughness of silicon etched in KOH solution," 2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), (2015).
[52] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan, Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials," Nano Letters, 13 (2013) 4393.
[53] K. P. Rola, I. Zubel, "Triton surfactant as an additive to KOH silicon etchant," Journal of Microelectromechanical Systems, 22 (2013) 1373.
[54] F. Baia, M. Lib, D. Song, H. Yub, B. Jiangb, Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Applied Surface Science, 273 (2013) 107.
[55] M. L. Brongersma, N. J. Halas, P. Nordlander, "Plasmon-induced hot carrier science and technology," Nature Nanotechnology, 10 (2015) 25.
[56] C. Zong, M. Xu, L. J. Xu, T. Wei, X. Ma, X. S. Zheng, R. Hu, B. Ren, "Surface-enhanced raman spectroscopy for bioanalysis: Reliability and challenges," Chemical Reviews 118 (2018) 4946.
[57] S. Asadi, L. Bianchi, M. D. Landro, S. Korganbayev, E. Schena, P. Saccomandi, "Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application," Journal of Biophotonics, 14 (2021) 202000161.
[58] M. D’Acunto, P. Cioni, E. Gabellieri, G. Presciuttini, "Exploiting gold nanoparticles for diagnosis and cancer treatments," Nanotechnology, 32 (2021) 192001.
[59] X. Yang, H. Zhong, Y. Zhu, J. Shen, C. Li, "Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays," Dalton Transactions, 42 (2013) 14324.
[60] Y. Li, J. Dykes, T. Gilliam, N. Chopra, "A new heterostructured SERS substrate: free-standing silicon nanowires decorated with graphene-encapsulated gold nanoparticles," Nanoscale, 9 (2017) 5263.
[61] S. Chakraborti, R. N. Basu, S. K. Panda, "Vertically aligned silicon nanowire array decorated by Ag or Au nanoparticles as SERS substrate for bio-molecular detection," Plasmonics, 13 (2017) 1057.
[62] G. Xu, R. Lu, J. Liu, H.Y . Chiu, R. Hui, J. Z. Wu, "Photodetection based on ionic liquid gated plasmonic Ag nanoparticle/graphene nanohybrid field effect transistors," Advanced Optical Materials, 2 (2014) 729.
[63] W. Zhang, W. Wang, H. Shia, Y. Lianga, J. Fua, M. Zhua, "Surface plasmon-driven photoelectrochemical water splitting of aligned ZnO nanorod arrays decorated with loading-controllable Au nanoparticles," Solar Energy Materials and Solar Cells, 180 (2018) 25.
[64] H. Li, Z. Li, Y. Yu, Y. Ma, W. Yang, F. Wang, X. Yin, X. Wang, "Surface-plasmon-resonance-enhanced photoelectrochemical water splitting from Au-nanoparticle-decorated 3D TiO2 nanorod architectures," The Journal of Physical Chemistry C, 121 (2017) 12071.
[65] X. Wang, K. Q. Peng, Y. Hu, F. Q. Zhang, B. Hu, L. Li, M. Wang, X. M. Meng, S. T. Lee, "Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation," Nano Letters, 14 (2014) 18.
[66] H. Chen, Q. Zhao, Y. Wang, S. Mu, H. Cui, J. Wang, T. Kong, X. Du, "Near-infrared light-driven controllable motions of gold-hollow-microcone array," ACS Applied Materials & Interfaces, 11 (2019) 15927.
[67] A. Roy, A. Maiti, T. K. Chini, B. Satpat, "Annealing induced morphology of silver nanoparticles on pyramidal silicon surface and their application to surface-enhanced raman scattering," ACS Applied Materials & Interfaces, 9 (2017) 34405.
[68] V. S. Vendamani, S. V. S. N. Rao, S. V. Rao, D. Kanjila, A. P. Pathak, "Three-dimensional hybrid silicon nanostructures for surface enhanced raman spectroscopy based molecular detection," Journal of Applied Physics, 123 (2018) 014301.
[69] R. Lu, J. Sha, W. Xia, Y. Fang, L. Gu, Y. Wang, "A 3D-SERS substrate with high stability: Silicon nanowire arrays decorated by silver nanoparticles," CrystEngComm, 15 (2013) 6207.
[70] S. Bai, Y. Du, C. Wang, J. Wu, K. Sugioka, "Reusable surface-enhanced raman spectroscopy substrates made of silicon nanowire array coated with silver nanoparticles fabricated by metal-assisted chemical etching and photonic reduction," Nanomaterials 9(2019) 1531.
[71] I. Kochylas, S. Gardelis, V. Likodimos, P. Falaras, A. G. Nassiopoulou, "Improved surface-enhanced-raman scattering sensitivity using Si nanowires/silver nanostructures by a single step metal-assisted chemical etching," Nanomaterials, 11 (2021) 1760.
[72] P. P. Sidi, N. R. Poespawati, D. Hartanto, "Solar Cell," Chapters, (2011).
[73] Y. Ajiki, T. Kan, M. Yahiro, A. Hamada, J. Adachi, C. Adachi, K. Matsumoto, I. Shimoyama, "Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars," Applied Physics Letters, 108 (2016) 151102.
[74] B. Wang, Y. Zhu, J. Dong, J. Jiang, Q. Wang, S. Li, X. Wang, "Self-powered, superior high gain silicon-based near-infrared photosensing for low-power light communication," Nano Energy, 70 (2020) 104544.
[75] L. B. Luo, J. J. Chen, M. Z. Wang, H. Hu, C. Y. Wu, Q. Li, L. Wang, J. A. Huang, F. X. Liang, "Near‐infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky junction," Advanced Functional Materials, 24 (2014) 2794.
[76] X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, "High detectivity graphene‐silicon heterojunction photodetector," Small, 12 (2016) 595.
[77] L. B. Luo, H. Hu, X. H. Wang, R. Lu, Y. F. Zou, Y. Q. Yu, F. X. Liang, "A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity," Journal of Materials Chemistry C, 3 (2015) 4723.
[78] J. Wang, X. Chen, W. Hu, L. Wang, W. Lu, F. Xu, J. Zhao, Y. Shi, R. Ji, "Amorphous HgCdTe infrared photoconductive detector with high detectivity above 200 K," Applied Physics Letters, 99 (2011) 113508.
[79] J. Deng, Z. Guo, Y. Zhang, X. Cao, S. Zhang, Y. Sheng, H. Xu, W. Bao, J. Wan, "MoS2/silicon-on-insulator heterojunction field-effect-transistor for high-performance photodetection," IEEE Electron Device Letters, 40 (2019) 423.
[80] V. Dhyani, S. Das, "High-speed scalable silicon-MoS2 PN heterojunction photodetectors," Scientific Reports, 7 (2017) 44243.
[81] Z. Lou, L. Zeng, Y. Wang, D. Wu, T. Xu, Z. Shi, Y. Tian, X. Li, Y. H. Tsang, "High-performance MoS2/Si heterojunction broadband photodetectors from deep ultraviolet to near infrared," Optics Letters, 42 (2017) 3335.
[82] P. Xiao, J. Mao, K. Ding, W. Luo, W. Hu, X. Zhang, X. Zhang, J. Jie, "Solution‐processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra‐broadband photodetection," Advanced Materials 30 (2018) 1801729.
[83] C. Xie, L. Zeng, Z. Zhang, Y. H. Tsang, L. Luo, J. H. Lee, "High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate," Nanoscale, 10 (2018) 15285.
[84] E. Wu, D. Wu, C. Jia, Y.e. Wang, H. Yuan, L. Zeng, T. Xu, Z. Shi, Y. Tian, X. Li, "In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared," ACS Photonics, 6 (2019) 565.
[85] W. Chen, T. Kan, Y. Ajiki, K. Matsumoto, I. Shimoyama, "NIR spectrometer using a schottky photodetector enhanced by grating-based SPR," Optics Express, 24 (2016) 25797.
[86] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection," Nanotechnology, 28 (2017) 275202.
[87] Z. Yang, K. Du, H. Wang, F. Lu, Y. Pang, J. Wang, X. Gan, W. Zhang, T. Mei, S. J. Chua, "Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure," Nanotechnology, 30 (2019) 075204.
[88] V. Lehmann, H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n‐type silicon," Journal of The Electrochemical Society, 137 (2019) 653.
[89] L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun, S. T. Lee, "MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high‐detectivity, self‐driven visible–near infrared photodetectors," Advanced Functional Materials, 25 (2015) 2910.
[90] L. Chen, W. Tian, C. Sun, F. Cao, L. Li, "Structural engineering of Si/TiO2/P3HT heterojunction photodetectors for a tunable response range," ACS Applied Materials & Interfaces, 11 (2019) 3241.
[91] Z. Wang, X. Zhang, D. Wu, J. Guo, Z. Zhao, Z. Shi, Y. Tian, X. Huang, X. Li, "Construction of mixed-dimensional WS2/Si heterojunctions for high-performance infrared photodetection and imaging applications," Journal of Materials Chemistry C, 8 (2020) 6877.
[92] D. Periyanagounder, P. Gnanasekar, P. Varadhan, J. H. He, J. Kulandaivel, "High performance, self-powered photodetectors based on a graphene/silicon Schottky junction diode," Journal of Materials Chemistry C, 6 (2018) 9545.
[93] N. Rosli, M. M. Halim, K. M. Chahrour, M. R. Hashim, "Incorporation of zinc oxide on macroporous silicon enhanced the sensitivity of macroporous silicon MSM photodetector," ECS Journal of Solid State Science and Technology, 9 (2020) 105005.
[94] D. H. Kim, W. Lee, J. M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires," Nanoscale, 10 (2018) 17705.
[95] J. M. Choi, H. Y. Jang, A. R. Kim, J. D. Kwon, B. Cho, M. H. Park, Y. Kim, "Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis," Nanoscale, 13 (2021) 672.
[96] M. Hossain, G. S. Kumar, S. N. B. Prabhava, E. D. Sheerin, D. McCloskey, S. Acharya, K. D. M. Rao, J. J. Boland, "Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications," ACS Nano, 12 (2018) 4727.
指導教授 鄭紹良 審核日期 2021-10-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明