博碩士論文 108324018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.138.204.208
姓名 王暄文(Hsuan-Wen Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用分子結構快速估算藥物與染料分子於超臨界二氧化碳中之溶解度
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本研究應用PSRK狀態方程式和PR+COSMOSAC (PRCS)狀態方程式於預測藥物和染料分子在超臨界二氧化碳中的溶解度。基於官能基貢獻概念的PSRK狀態方程式中所需溶質之臨界性質可利用NRR官能基貢獻法或以量子化學計算為基礎的PRCS 狀態方程式來估算。在PRCS狀態方程式中,所探討溶質的分子結構是QM/COSMO溶合計算所需的唯一資訊,藉以產生相平衡計算所需的資訊。在計算溶解度的固體與超臨界流體相平衡計算中,溶質的固相逸壓可應用溶質的熔點溫度和熔化焓獲得,但大部分新合成之溶質尚缺乏所需的熔點性質,此外溶質的固相逸壓也可由溶質的氣固相平衡線為參考狀態求得。為了克服所需熔點性質實驗數據的缺乏,本研究中將首次系統化的探討利用修改參數後之Lee-Kesler (LK)方程式來估算昇華壓,並了解其應用於預測固體溶質於超臨界二氧化碳中溶解度的精確度。LK方程式中所需溶質之臨界性質亦同樣透過上述NRR或PRCS二方法估算求得,應用本方法進行溶解度預測僅需溶質之分子結構。
本研究共探討了99種藥物溶質和58種染料溶質。由於使用PRCS進行相平衡計算時,若是搭配迴歸昇華壓修改參數的LK方程式,則會產生溶解度的計算結果系統性高估的問題,因此改以搭配迴歸溶解度修改參數的LK方程式進行計算。由於官能基貢獻法會面臨缺乏相互作用參數和官能基定義的問題,PSRK僅能預測其中57種藥物溶質的溶解度,PSRK搭配使用NRR與PRCS估算之臨界性質進行溶解度預測所得到之平均對數誤差(ALD-x)分別為0.914和0.842,對於相同的57種溶質,PRCS搭配使用NRR與PRCS估算之臨界性質行溶解度預測所得到的ALD-x分別為1.597和0.893。PR+COSMOSAC的計算僅需分子結構,不存在缺乏參數的問題,因此可用於預測所有已知分子結構之固體溶質,在99種藥物溶質的溶解度預測中獲得之ALD-x為0.871,而在58種染料溶質的溶解度預測中獲得之ALD-x為1.138。
摘要(英) The PSRK EOS and PR+COSMOSAC (PRCS) EOS were used to predict the solubility of drug-like and dye-like molecules in supercritical carbon dioxide (SCCO2). The required input of critical properties of the studied solute for group-contribution model PSRK were obtained by either NRR model (based on the group contribution concept) or PRCS EOS (based on the first-principles solvation model). In PRCS EOS, the molecular structure of the studied solute was the only input for QM/COSMO solvation calculation to generate the key information for phase equilibrium calculations. In the solid-fluid equilibrium calculation, the solid phase fugacity of the solute can be obtained from its melting point and heat of fusion, but most of the newly synthesized solutes are lack of experimental melting properties. Besides, the solid phase fugacity can also be determined with the solid-vapor equilibrium line as the reference state. In order to overcome the lack of required experimental melting properties, the accuracy of using sublimation pressure estimated from the Lee-Kesler (LK) equation in predicting solid solute solubility was investigated. The required critical properties for the LK equation were estimated by the aforementioned NRR or PRCS methods. Thus, the proposed approach requires the only input of molecular structure of the studied solute.
A total of 99 drug-like and 58 dye-like solutes were investigated in this study. When using PRCS for phase equilibrium calculation, if it is combined with the LK equation of regression sublimation pressure to optimize the parameters, the predicted result of solubility will be systematically overestimated, so the calculation is changed to the LK equation with regression solubility to optimize the parameters. Because the group contribution method faces the issue of lacking interaction parameters and functional group definitions, PSRK can only predict the solubility of 57 drug-like solutes, the average logarithmic deviation in solubility (ALD-x) of PSRK using critical properties from NRR and PRCS are 0.914 and 0.842, respectively. The ALD-x of PRCS using critical properties from NRR and PRCS are 1.597 and 0.911, respectively, for the same 57 solutes. PR+COSMOSAC requires the molecular structure as the only input, and thus can be applied to describe all solid solutes. The ALD-x for predicting solubility of 99 drug-like and 58 dye-like solutes is 0.974 and 1.138, respectively.
關鍵字(中) ★ 超臨界二氧化碳
★ 溶解度
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1-1 超臨界流體性質簡介 1
1-2 回顧固體溶質溶解度之計算方法 4
1-3 研究動機 8
第二章 計算原理與細節 9
2-1 溶解度計算細節 9
2-2 PSRK EOS 13
2-2-1 官能基貢獻法估算臨界性質 14
2-2-2 PR+COSMOSAC EOS計算臨界性質 16
2-2-3 偏心因子的計算方法 17
2-3 PR+COSMOSAC EOS 18
2-3-1 溶合自由能(Solvation Free Energy) 20
2-3-2 QM/COSMO資訊細節 25
第三章 藥物溶質結果 26
3-1 使用熔點性質或昇華壓對溶解度計算的影響 27
3-2 使用Lee-Kesler或Ambrose-Walton方法對昇華壓計算的影響 29
3-3 不同方法獲得的昇華壓對溶解度計算的影響 32
3-4 分子結構複雜度效應 42
3-5 使用溶解度數據進行LK方程式參數優化 45
3-6 探討PR+COSMOSAC環狀修正係數對溶解度計算的影響 49
第四章 染料溶質結果 53
4-1 使用熔點性質或昇華壓對溶解度計算的影響 53
4-2 使用溶解度數據進行LK方程式參數優化 55
4-3 探討PR+COSMOSAC環狀修正係數對溶解度計算的影響 57
第五章 結論 59
參考文獻 60
附錄(一) 藥物溶質的性質資訊和溶解度實驗數據 73
附錄(二) 染料溶質的性質資訊和溶解度實驗數據 76
附錄(三) 臨界性質計算結果 78
附錄(四) 含有昇華壓實驗數據的分子 84
附錄(五) 額外挑選含有昇華壓實驗數據的分子 85
附錄(六) 官能基切割示意圖 86
附錄(七) 藥物溶質的分子結構 87
附錄(八) 染料溶質的分子結構 96
附錄(九) LK和AW方程式中的參數 101
參考文獻 1. Kohli, R., Chapter 6 - Applications of Supercritical Carbon Dioxide for Removal of Surface Contaminants. In Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques, Kohli, R.; Mittal, K. L., Eds. Elsevier: 2019; pp 209-249.
2. Essien, S. O.; Young, B.; Baroutian, S., Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends in Food Science & Technology 2020, 97, 156-169.
3. Abou Elmaaty, T.; Abd El-Aziz, E., Supercritical carbon dioxide as a green media in textile dyeing: A review. Textile Research Journal 2017, 88 (10), 1184-1212.
4. Amenaghawon, A. N.; Anyalewechi, C. L.; Kusuma, H. S.; Mahfud, M., Chapter 13 - Applications of supercritical carbon dioxide in textile industry. In Green Sustainable Process for Chemical and Environmental Engineering and Science, Inamuddin; Asiri, A. M.; Isloor, A. M., Eds. Elsevier: 2020; pp 329-346.
5. Banchero, M., Recent advances in supercritical fluid dyeing. Coloration Technology 2020, 136 (4), 317-335.
6. Chrastil, J., Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry 1982, 86 (15), 3016-3021.
7. Belghait, A.; Si-Moussa, C.; Laidi, M.; Hanini, S., Semi-empirical correlation of solid solute solubility in supercritical carbon dioxide: Comparative study and proposition of a novel density-based model. Comptes Rendus Chimie 2018, 21 (5), 494-513.
8. Adachi, Y.; Lu, B. C. Y., Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equilibria 1983, 14, 147-156.
9. Bian, X.; Du, Z.; Tang, Y., An improved density-based model for the solubility of some compounds in supercritical carbon dioxide. Thermochimica Acta 2011, 519 (1), 16-21.
10. Kumar, S. K.; Johnston, K. P., Modelling the solubility of solids in supercritical fluids with density as the independent variable. The Journal of Supercritical Fluids 1988, 1 (1), 15-22.
11. Méndez-Santiago, J.; Teja, A. S., The solubility of solids in supercritical fluids. Fluid Phase Equilibria 1999, 158-160, 501-510.
12. Abdallah el hadj, A.; Laidi, M.; Si-Moussa, C.; Hanini, S., Novel approach for estimating solubility of solid drugs in supercritical carbon dioxide and critical properties using direct and inverse artificial neural network (ANN). Neural Computing and Applications 2017, 28 (1), 87-99.
13. Aminian, A., Estimating the solubility of different solutes in supercritical CO2 covering a wide range of operating conditions by using neural network models. The Journal of Supercritical Fluids 2017, 125, 79-87.
14. KhazaiePoul, A.; Soleimani, M.; Salahi, S., Solubility prediction of disperse dyes in supercritical carbon dioxide and ethanol as co-solvent using neural network. Chinese Journal of Chemical Engineering 2016, 24 (4), 491-498.
15. Abdi-Khanghah, M.; Bemani, A.; Naserzadeh, Z.; Zhang, Z., Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN. Journal of CO2 Utilization 2018, 25, 108-119.
16. Soave, G., Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Science 1972, 27 (6), 1197-1203.
17. Peng, D.-Y.; Robinson, D. B., A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals 1976, 15 (1), 59-64.
18. Huron, M.-J.; Vidal, J., New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria 1979, 3 (4), 255-271.
19. Wong, D. S. H.; Sandler, S. I., A theoretically correct mixing rule for cubic equations of state. AIChE Journal 1992, 38 (5), 671-680.
20. Michelsen, M. L., A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria 1990, 60 (1), 213-219.
21. Boukouvalas, C.; Spiliotis, N.; Coutsikos, P.; Tzouvaras, N.; Tassios, D., Prediction of vapor-liquid equilibrium with the LCVM model: a linear combination of the Vidal and Michelsen mixing rules coupled with the original UNIF. Fluid Phase Equilibria 1994, 92, 75-106.
22. Wilson, G. M., Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society 1964, 86 (2), 127-130.
23. Renon, H.; Prausnitz, J. M., Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal 1968, 14 (1), 135-144.
24. Abrams, D. S.; Prausnitz, J. M., Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE Journal 1975, 21 (1), 116-128.
25. Fredenslund, A.; Jones, R. L.; Prausnitz, J. M., Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal 1975, 21 (6), 1086-1099.
26. Sodeifian, G.; Saadati Ardestani, N.; Sajadian, S. A.; Golmohammadi, M. R.; Fazlali, A., Prediction of Solubility of Sodium Valproate in Supercritical Carbon Dioxide: Experimental Study and Thermodynamic Modeling. Journal of Chemical & Engineering Data 2020, 65 (4), 1747-1760.
27. Hazaveie, S. M.; Sodeifian, G.; Sajadian, S. A., Measurement and thermodynamic modeling of solubility of Tamsulosin drug (anti cancer and anti-prostatic tumor activity) in supercritical carbon dioxide. The Journal of Supercritical Fluids 2020, 163, 104875.
28. Bitencourt, R. G.; Palma, A. M.; Coutinho, J. A. P.; Cabral, F. A.; Meirelles, A. J. A., Prediction of solid solute solubility in supercritical CO2 with cosolvents using the CPA EoS. Fluid Phase Equilibria 2019, 482, 1-10.
29. Bagheri, H.; Ali Mansoori, G.; Hashemipour, H., A novel approach to predict drugs solubility in supercritical solvents for RESS process using various cubic EoS-mixing rule. Journal of Molecular Liquids 2018, 261, 174-188.
30. Wang, L.-H.; Lin, S.-T., A predictive method for the solubility of drug in supercritical carbon dioxide. The Journal of Supercritical Fluids 2014, 85, 81-88.
31. Cai, Z.-Z.; Liang, H.-H.; Chen, W.-L.; Lin, S.-T.; Hsieh, C.-M., First-principles prediction of solid solute solubility in supercritical carbon dioxide using PR+COSMOSAC EOS. Fluid Phase Equilibria 2020, 522, 112755.
32. Cai, Z.-Z.; Hsieh, C.-M., Prediction of solid solute solubility in supercritical carbon dioxide with and without organic cosolvents from PSRK EOS. The Journal of Supercritical Fluids 2020, 158, 104735.
33. Kikic, I.; Lora, M.; Bertucco, A., A Thermodynamic Analysis of Three-Phase Equilibria in Binary and Ternary Systems for Applications in Rapid Expansion of a Supercritical Solution (RESS), Particles from Gas-Saturated Solutions (PGSS), and Supercritical Antisolvent (SAS). Industrial & Engineering Chemistry Research 1997, 36 (12), 5507-5515.
34. Huang, C.-C.; Tang, M.; Tao, W.-H.; Chen, Y.-P., Calculation of the solid solubilities in supercritical carbon dioxide using a modified mixing model. Fluid Phase Equilibria 2001, 179 (1), 67-84.
35. Lee, B. I.; Kesler, M. G., A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE Journal 1975, 21 (3), 510-527.
36. Bruce, E. P.; John, M. P.; John, P. O. C., Properties of Gases and Liquids, Fifth Edition. McGraw-Hill Education: New York, 2001.
37. Holderbaum, T.; Gmehling, J., PSRK: A Group Contribution Equation of State Based on UNIFAC. Fluid Phase Equilibria 1991, 70 (2), 251-265.
38. Fischer, K.; Gmehling, J., Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities. Fluid Phase Equilibria 1995, 112 (1), 1-22.
39. Horstmann, S.; Fischer, K.; Gmehling, J., PSRK group contribution equation of state: revision and extension III. Fluid Phase Equilibria 2000, 167 (2), 173-186.
40. Horstmann, S.; Jabłoniec, A.; Krafczyk, J.; Fischer, K.; Gmehling, J., PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. Fluid Phase Equilibria 2005, 227 (2), 157-164.
41. Gmehling, J.; Li, J.; Fischer, K., Further development of the PSRK model for the prediction of gas solubilities and vapor-liquid -equilibria at low and high pressures II. Fluid Phase Equilibria 1997, 141 (1), 113-127.
42. Dortmund Data Bank, www.ddbst.com.
43. Nannoolal, Y.; Rarey, J.; Ramjugernath, D.; Cordes, W., Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilibria 2004, 226, 45-63.
44. Nannoolal, Y.; Rarey, J.; Ramjugernath, D., Estimation of pure component properties: Part 2. Estimation of critical property data by group contribution. Fluid Phase Equilibria 2007, 252 (1), 1-27.
45. Hsieh, C.-M.; Lin, S.-T., Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations. AIChE Journal 2008, 54 (8), 2174-2181.
46. Hsieh, C.-M.; Lin, S.-T., First-Principles Predictions of Vapor−Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations. Industrial & Engineering Chemistry Research 2009, 48 (6), 3197-3205.
47. Hsieh, C.-M.; Lin, S.-T., Prediction of liquid–liquid equilibrium from the Peng–Robinson+COSMOSAC equation of state. Chemical Engineering Science 2010, 65 (6), 1955-1963.
48. Wang, L.-H.; Hsieh, C.-M.; Lin, S.-T., Improved Prediction of Vapor Pressure for Pure Liquids and Solids from the PR+COSMOSAC Equation of State. Industrial & Engineering Chemistry Research 2015, 54 (41), 10115-10125.
49. Liang, H.-H.; Li, J.-Y.; Wang, L.-H.; Lin, S.-T.; Hsieh, C.-M., Improvement to PR+COSMOSAC EOS for Predicting the Vapor Pressure of Nonelectrolyte Organic Solids and Liquids. Industrial & Engineering Chemistry Research 2019, 58 (12), 5030-5040.
50. Lin, S.-T.; Hsieh, C.-M.; Lee, M.-T., Solvation and chemical engineering thermodynamics. Journal of the Chinese Institute of Chemical Engineers 2007, 38 (5), 467-476.
51. Hsieh, C.-M.; Lin, S.-T., Prediction of 1-octanol–water partition coefficient and infinite dilution activity coefficient in water from the PR+COSMOSAC model. Fluid Phase Equilibria 2009, 285 (1), 8-14.
52. Hsieh, C.-M.; Lin, S.-T., First-principles prediction of phase equilibria using the PR + COSMOSAC equation of state. Asia-Pacific Journal of Chemical Engineering 2012, 7 (S1), S1-S10.
53. Chen, C.-Y.; Wang, L.-H.; Hsieh, C.-M.; Lin, S.-T., Prediction of solid-liquid-gas equilibrium for binary mixtures of carbon dioxide + organic compounds from approaches based on the COSMO-SAC model. The Journal of Supercritical Fluids 2018, 133, 318-329.
54. Ben‐Naim, A., Is mixing a thermodynamic process? American Journal of Physics 1987, 55 (8), 725-733.
55. Lin, S.-T.; Chang, J.; Wang, S.; Goddard, W. A.; Sandler, S. I., Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model. The Journal of Physical Chemistry A 2004, 108 (36), 7429-7439.
56. Chen, W.-L.; Hsieh, C.-M.; Yang, L.; Hsu, C.-C.; Lin, S.-T., A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor–Liquid and Liquid–Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations. Industrial & Engineering Chemistry Research 2016, 55 (34), 9312-9322.
57. Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
58. DIPPR Database, https://www.aiche.org/dippr.
59. Coutsikos, P.; Magoulas, K.; Tassios, D., Solubilities of p-quinone and 9,10-anthraquinone in supercritical carbon dioxide. Journal of Chemical & Engineering Data 1997, 42 (3), 463-466.
60. Stassi, A.; Bettini, R.; Gazzaniga, A.; Giordano, F.; Schiraldi, A., Assessment of solubility of ketoprofen and vanillic acid in supercritical CO2 under dynamic conditions. Journal of Chemical & Engineering Data 2000, 45 (2), 161-165.
61. Huang, Z.; Lu, W. D.; Kawi, S.; Chiew, Y. C., Solubility of aspirin in supercritical carbon dioxide with and without acetone. Journal of Chemical & Engineering Data 2004, 49 (5), 1323-1327.
62. Johnston, K. P.; Ziger, D. H.; Eckert, C. A., Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der Waals treatment. Industrial & Engineering Chemistry Fundamentals 1982, 21 (3), 191-197.
63. Miller, D. J.; Hawthorne, S. B.; Clifford, A. A.; Zhu, S., Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide from 313 K to 523 K and pressures from 100 bar to 450 bar. Journal of Chemical & Engineering Data 1996, 41 (4), 779-786.
64. Ting, S. S. T.; Tomasko, D. L.; Foster, N. R.; Macnaughton, S. J., Solubility of naproxen in supercritical carbon dioxide with and without cosolvents. Industrial & Engineering Chemistry Research 1993, 32 (7), 1471-1481.
65. Sahle-Demessie, E.; Pillai, U. R.; Junsophonsri, S.; Levien, K. L., Solubility of organic biocides in supercritical CO2 and CO2 + cosolvent mixtures. Journal of Chemical & Engineering Data 2003, 48 (3), 541-547.
66. Murga, R.; Sanz, M. T.; Beltran, S.; Cabezas, J. L., Solubility of three hydroxycinnamic acids in supercritical carbon dioxide. The Journal of Supercritical Fluids 2003, 27 (3), 239-245.
67. Murga, R.; Sanz, M. T.; Beltran, S.; Cabezas, J. L., Solubility of some phenolic compounds contained in grape seeds, in supercritical carbon dioxide. The Journal of Supercritical Fluids 2002, 23 (2), 113-121.
68. Cortesi, A.; Kikic, I.; Alessi, P.; Turtoi, G.; Garnier, S., Effect of chemical structure on the solubility of antioxidants in supercritical carbon dioxide: experimental data and correlation. The Journal of Supercritical Fluids 1999, 14 (2), 139-144.
69. Murga, R.; Sanz, M. T.; Beltrán, S.; Cabezas, J. L., Solubility of Syringic and Vanillic Acids in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2004, 49 (4), 779-782.
70. Macnaughton, S. J.; Foster, N. R., Solubility of DDT and 2,4-DIN supercritical carbon-dioxide and supercritical carbon-dioxide saturated with water Industrial & Engineering Chemistry Research 1994, 33 (11), 2757-2763.
71. Huang, Z.; Kawi, S.; Chiew, Y. C., Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents. The Journal of Supercritical Fluids 2004, 30 (1), 25-39.
72. Alessi, P.; Cortesi, A.; Kikic, I.; Foster, N. R.; Macnaughton, S. J.; Colombo, I., Particle Production of Steroid Drugs Using Supercritical Fluid Processing. Industrial & Engineering Chemistry Research 1996, 35 (12), 4718-4726.
73. Schmitt, W. J.; Reid, R. C., Solubility of monofunctional organic solids in chemically diverse supercritical fluids. Journal of Chemical & Engineering Data 1986, 31 (2), 204-212.
74. Chen, Y. P.; Chen, Y. M.; Tang, M., Solubilities of cinnamic acid, phenoxyacetic acid and 4-methoxyphenylacetic acid in supercritical carbon dioxide. Fluid Phase Equilibria 2009, 275 (1), 33-38.
75. Yun, S. J.; Liong, K. K.; Gurdial, G. S.; Foster, N. R., Solubility of cholesterol in supercritical carbon dioxide. Industrial & Engineering Chemistry Research 1991, 30 (11), 2476-2482.
76. Burgos-Solórzano, G. I.; Brennecke, J. F.; Stadtherr, M. A., Solubility measurements and modeling of molecules of biological and pharmaceutical interest with supercritical CO2. Fluid Phase Equilibria 2004, 220 (1), 57-69.
77. Johannsen, M.; Brunner, G., Solubility of the xanthines caffeine, theophylline and theobromine in supercritical carbon-dioxide. Fluid Phase Equilibria 1994, 95, 215-226.
78. Macnaughton, S. J.; Kikic, I.; Foster, N. R.; Alessi, P.; Cortesi, A.; Colombo, I., Solubility of Anti-Inflammatory Drugs in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1996, 41 (5), 1083-1086.
79. Hampson, J. W.; Maxwell, R. J.; Li, S.; Shadwell, R. J., Solubility of Three Veterinary Sulfonamides in Supercritical Carbon Dioxide by a Recirculating Equilibrium Method. Journal of Chemical & Engineering Data 1999, 44 (6), 1222-1225.
80. Xing; Yang; Su; Huang, M.; Ren, Solubility of Artemisinin in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2003, 48 (2), 330-332.
81. Yamini, Y.; Hassan, J.; Haghgo, S., Solubilities of Some Nitrogen-Containing Drugs in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2001, 46 (2), 451-455.
82. Knez, Z.; Skerget, M.; Sencar-Bozic, P.; Rizner, A., Solubility of Nifedipine and Nitrendipine in Supercritical CO2. Journal of Chemical & Engineering Data 1995, 40 (1), 216-220.
83. Duarte, A. R. C.; Coimbra, P.; de Sousa, H. C.; Duarte, C. M. M., Solubility of Flurbiprofen in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2004, 49 (3), 449-452.
84. Ch, R.; Garlapati, C.; Madras, G., Solubility of n-(4-Ethoxyphenyl)ethanamide in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2010, 55 (3), 1437-1440.
85. Garmroodi, A.; Hassan, J.; Yamini, Y., Solubilities of the Drugs Benzocaine, Metronidazole Benzoate, and Naproxen in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2004, 49 (3), 709-712.
86. Asghari-Khiavi, M.; Yamini, Y., Solubility of the Drugs Bisacodyl, Methimazole, Methylparaben, and Iodoquinol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2003, 48 (1), 61-65.
87. Barna, L.; Blanchard, J.-M.; Rauzy, E.; Berro, C., Solubility of Flouranthene, Chrysene, and Triphenylene in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1996, 41 (6), 1466-1469.
88. McHugh, M.; Paulaitis, M. E., Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide. Journal of Chemical & Engineering Data 1980, 25 (4), 326-329.
89. Yamini, Y.; Bahramifar, N., Solubility of Polycyclic Aromatic Hydrocarbons in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2000, 45 (1), 53-56.
90. Kramer, A.; Thodos, G., Solubility of 1-octadecanol and stearic acid in supercritical carbon dioxide. Journal of Chemical & Engineering Data 1989, 34 (2), 184-187.
91. Yau, J.-S.; Tsai, F.-N., Solubilities of 1-Eicosanol and Eicosanoic Acid in Supercritical Carbon Dioxide from 308.2 to 328.2 K at Pressures to 21.26 MPa. Journal of Chemical & Engineering Data 1994, 39 (4), 827-829.
92. Sparks, D. L.; Hernandez, R.; Estévez, L. A.; Meyer, N.; French, T., Solubility of Azelaic Acid in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2007, 52 (4), 1246-1249.
93. Charoenchaitrakool, M.; Dehghani, F.; Foster, N. R.; Chan, H. K., Micronization by Rapid Expansion of Supercritical Solutions to Enhance the Dissolution Rates of Poorly Water-Soluble Pharmaceuticals. Industrial & Engineering Chemistry Research 2000, 39 (12), 4794-4802.
94. Kotnik, P.; Škerget, M.; Knez, Ž., Solubility of Nicotinic Acid and Nicotinamide in Carbon Dioxide at T = (313.15 to 373.15) K and p = (5 to 30) MPa: Experimental Data and Correlation. Journal of Chemical & Engineering Data 2011, 56 (2), 338-343.
95. García-González, J.; Molina, M. J.; Rodríguez, F.; Mirada, F., Solubilities of Phenol and Pyrocatechol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2001, 46 (4), 918-921.
96. Cheng, K. W.; Tang, M.; Chen, Y. P., Solubilities of benzoin, propyl 4-hydroxybenzoate and mandelic acid in supercritical carbon dioxide. Fluid Phase Equilibria 2002, 201 (1), 79-96.
97. Li, H. R.; Jia, D. D.; Zhu, Q. Q.; Shen, B. Q., Determination, correlation and prediction of the solubilities of niflumic acid, clofenamic acid and tolfenamic acid in supercritical CO2. Fluid Phase Equilibria 2015, 392, 95-103.
98. Van Leer, R. A.; Paulaitis, M. E., Solubilities of phenol and chlorinated phenols in supercritical carbon dioxide. Journal of Chemical & Engineering Data 1980, 25 (3), 257-259.
99. Vatanara, A.; Najafabadi, A. R.; Khajeh, M.; Yamini, Y., Solubility of some inhaled glucocorticoids in supercritical carbon dioxide. The Journal of Supercritical Fluids 2005, 33 (1), 21-25.
100. Hojjati, M.; Yamini, Y.; Khajeh, M.; Vatanar, A., Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations. The Journal of Supercritical Fluids 2007, 41 (2), 187-194.
101. Dean, J. R.; Kane, M.; Khundker, S.; Dowle, C.; Tranter, R. L.; Jones, P., Estimation and determination of steroid solubility in supercritical carbon dioxide. Analyst 1995, 120 (8), 2153-2157.
102. Hezave, A. Z.; Aftab, S.; Esmaeilzadeh, F., Solubility of sulindac in the supercritical carbon dioxide: Experimental and modeling approach. The Journal of Supercritical Fluids 2012, 68, 39-44.
103. Hosseini, M. H.; Alizadeh, N.; Khanchi, A. R., Solubility analysis of clozapine and lamotrigine in supercritical carbon dioxide using static system. The Journal of Supercritical Fluids 2010, 52 (1), 30-35.
104. Yamini, Y.; Arab, J.; Asghari-khiavi, M., Solubilities of phenazopyridine, propranolol, and methimazole in supercritical carbon dioxide. Journal of Pharmaceutical and Biomedical Analysis 2003, 32 (1), 181-187.
105. Zeinolabedini Hezave, A.; Esmaeilzadeh, F., Solubility Measurement of Diclofenac Acid in the Supercritical CO2. Journal of Chemical & Engineering Data 2012, 57 (6), 1659-1664.
106. Weinstein, R. D.; Gribbin, J. J.; Muske, K. R., Solubility and Salting Behavior of Several β-Adrenergic Blocking Agents in Liquid and Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2005, 50 (1), 226-229.
107. Lucien, F. P.; Foster, N. R., Influence of Matrix Composition on the Solubility of Hydroxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research 1996, 35 (12), 4686-4699.
108. Li, W. M.; Jin, J. S.; Tian, G. H.; Zhang, Z., Single-component and mixture solubilities of ethyl p-hydroxybenzoate and ethyl p-aminobenzoate in supercritical CO2. Fluid Phase Equilibria 2008, 264 (1-2), 93-98.
109. Rodrigues, R. F.; Tashima, A. K.; Pereira, R. M. S.; Mohamed, R. S.; Cabral, F. A., Coumarin solubility and extraction from emburana (Torresea cearensis) seeds with supercritical carbon dioxide. The Journal of Supercritical Fluids 2008, 43 (3), 375-382.
110. Chen, Y. M.; Chen, Y. P., Measurements for the solid solubilities of antipyrine, 4-aminoantipyrine and 4-dimethylaminoantipyrine in supercritical carbon dioxide. Fluid Phase Equilib. 2009, 282 (2), 82-87.
111. Li, J. L.; Jin, J. S.; Zhang, Z. T.; Pei, X. M., Equilibrium solubilities of a p-toluenesulfonamide and sulfanilamide mixture in supercritical carbon dioxide with and without ethanol. The Journal of Supercritical Fluids 2010, 52 (1), 11-17.
112. Manna, L.; Banchero, M., Solubility of Tolbutamide and Chlorpropamide in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2018, 63 (5), 1745-1751.
113. Huang, Z.; Yang, X. W.; Sun, G. B.; Song, S. W.; Kawi, S., The solubilities of xanthone and xanthene in supercritical carbon dioxide: Structure effect. The Journal of Supercritical Fluids 2005, 36 (2), 91-97.
114. Perrotin-Brunel, H.; van Roosmalen, M. J. E.; Kroon, M. C.; van Spronsen, J.; Witkamp, G.-J.; Peters, C. J., Solubility of Cannabinol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2010, 55 (9), 3704-3707.
115. Favareto, R.; Fregadolli, P. H.; Cabral, V. F.; Antunes, O. A. C.; Cardozo-Filho, L., Phase Equilibria of Acrylonitrile and p-Bromobenzaldehyde in Carbon Dioxide. Journal of Chemical & Engineering Data 2008, 53 (5), 1080-1084.
116. Yamini, Y.; Fat′hi, M. R.; Alizadeh, N.; Shamsipur, M., Solubility of dihydroxybenzene isomers in supercritical carbon dioxide. Fluid Phase Equilibria 1998, 152 (2), 299-305.
117. Chen, J. W.; Tsai, F. N., Solubilities of methoxybenzoic acid isomer in supercritical carbon dioxide. Fluid Phase Equilibria 1995, 107 (2), 189-200.
118. Li, Q. S.; Zhang, Z. T.; Zhong, C. L.; Liu, Y. C.; Zhou, Q. R., Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents. Fluid Phase Equilibria 2003, 207 (1-2), 183-192.
119. Asiabi, H.; Yamini, Y.; Tayyebi, M.; Moradi, M.; Vatanara, A.; Keshmiri, K., Measurement and correlation of the solubility of two steroid drugs in supercritical carbon dioxide using semi empirical models. The Journal of Supercritical Fluids 2013, 78, 28-33.
120. Reveco-Chilla, A. G.; Cabrera, A. L.; de la Fuente, J. C.; Zacconi, F. C.; del Valle, J. M.; Valenzuela, L. M., Solubility of menadione and dichlone in supercritical carbon dioxide. Fluid Phase Equilibria 2016, 423, 84-92.
121. Chen, Y. M.; Lin, P. C.; Tang, M.; Chen, Y. P., Solid solubility of antilipemic agents and micronization of gemfibrozil in supercritical carbon dioxide. The Journal of Supercritical Fluids 2010, 52 (2), 175-182.
122. Liu, T.; Li, S.; Zhou, R.; Jia, D.; Tian, S., Solubility of Triphenylmethyl Chloride and Triphenyltin Chloride in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2009, 54 (6), 1913-1915.
123. Garlapati, C.; Madras, G., Solubilities of Dodecanoic and Tetradecanoic Acids in Supercritical CO2 with and without Entrainers. Journal of Chemical & Engineering Data 2008, 53 (11), 2637-2641.
124. Garlapati, C.; Madras, G., Solubilities of Hexadecanoic and Octadecanoic Acids in Supercritical CO2 With and Without Cosolvents. Journal of Chemical & Engineering Data 2008, 53 (12), 2913-2917.
125. Pérez, E.; Cabañas, A.; Sánchez-Vicente, Y.; Renuncio, J. A. R.; Pando, C., High-pressure phase equilibria for the binary system carbon dioxide+dibenzofuran. The Journal of Supercritical Fluids 2008, 46 (3), 238-244.
126. Bristow, S.; Shekunov, B. Y.; York, P., Solubility Analysis of Drug Compounds in Supercritical Carbon Dioxide Using Static and Dynamic Extraction Systems. Industrial & Engineering Chemistry Research 2001, 40 (7), 1732-1739.
127. Lucien, F. P.; Foster, N. R., Solubilities of Mixed Hydroxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1998, 43 (5), 726-731.
128. Joung, S. N.; Yoo, K.-P., Solubility of Disperse Anthraquinone and Azo Dyes in Supercritical Carbon Dioxide at 313.15 to 393.15 K and from 10 to 25 MPa. Journal of Chemical & Engineering Data 1998, 43 (1), 9-12.
129. Shinoda, T.; Tamura, K., Solubilities of C.I. Disperse Red 1 and C.I. Disperse Red 13 in supercritical carbon dioxide. Fluid Phase Equilibria 2003, 213 (1-2), 115-123.
130. Coelho, J. P.; Mendonça, A. F.; Palavra, A. F.; Stateva, R. P., On the Solubility of Three Disperse Anthraquinone Dyes in Supercritical Carbon Dioxide: New Experimental Data and Correlation. Industrial & Engineering Chemistry Research 2011, 50 (8), 4618-4624.
131. Tamura, K.; Alwi, R. S., Solubility of anthraquinone derivatives in supercritical carbon dioxide. Dyes and Pigments 2015, 113, 351-356.
132. Draper, S. L.; Montero, G. A.; Smith, B.; Beck, K., Solubility relationships for disperse dyes in supercritical carbon dioxide. Dyes and Pigments 2000, 45 (3), 177-183.
133. Ozcan, A. S.; Clifford, A. A.; Bartle, K. D.; Lewis, D. M., Solubility of disperse dyes in supercritical carbon dioxide. Journal of Chemical & Engineering Data 1997, 42 (3), 590-592.
134. Lee, J. W.; Min, J. M.; Bae, H. K., Solubility Measurement of Disperse Dyes in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1999, 44 (4), 684-687.
135. Sung, H.-D.; Shim, J.-J., Solubility of C. I. Disperse Red 60 and C. I. Disperse Blue 60 in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1999, 44 (5), 985-989.
136. Tuma, D.; Wagner, B.; Schneider, G. M., Comparative solubility investigations of anthraquinone disperse dyes in near- and supercritical fluids. Fluid Phase Equilibria 2001, 182 (1), 133-143.
137. Bao, P.; Dai, J., Relationships between the Solubility of C. I. Disperse Red 60 and Uptake on PET in Supercritical CO2. Journal of Chemical & Engineering Data 2005, 50 (3), 838-842.
138. Cabral, V. F.; Santos, W. L. F.; Muniz, E. C.; Rubira, A. F.; Cardozo-Filho, L., Correlation of dye solubility in supercritical carbon dioxide. The Journal of Supercritical Fluids 2007, 40 (2), 163-169.
139. Dong, P.; Xu, M.; Lu, X.; Lin, C., Measurement and correlation of solubilities of C.I. Disperse Red 73, C.I. Disperse Yellow 119 and their mixture in supercritical carbon dioxide. Fluid Phase Equilibria 2010, 297 (1), 46-51.
140. Zheng, J.; Xu, M.; Lu, X.; Lin, C., Measurement and Correlation of Solubilities of C.I. Disperse Red 73, C.I. Disperse Blue 183 and Their Mixture in Supercritical Carbon Dioxide. Chinese Journal of Chemical Engineering 2010, 18 (4), 648-653.
141. Lin, H.-m.; Ho, C.-C.; Lee, M.-J., Solubilities of disperse dyes of blue 79:1, red 82 and modified yellow 119 in supercritical carbon dioxide and nitrous oxide. The Journal of Supercritical Fluids 2004, 32 (1), 105-114.
142. Gupta, R. B.; Shim, J.-J., Solubility in Supercritical Carbon Dioxide. 2007.
143. Lin, H.-m.; Liu, C.-Y.; Cheng, C.-H.; Chen, Y.-T.; Lee, M.-J., Solubilities of disperse dyes of blue 79, red 153, and yellow 119 in supercritical carbon dioxide. The Journal of Supercritical Fluids 2001, 21 (1), 1-9.
144. Coelho, J. P.; Stateva, R. P., Solubility of Red 153 and Blue 1 in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2011, 56 (12), 4686-4690.
145. Kong, X.-j.; Huang, T.-t.; Cui, H.-s.; Yang, D.-f.; Lin, J.-x., Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide. Journal of CO2 Utilization 2019, 33, 1-11.
146. Ferri, A.; Banchero, M.; Manna, L.; Sicardi, S., An experimental technique for measuring high solubilities of dyes in supercritical carbon dioxide. The Journal of Supercritical Fluids 2004, 30 (1), 41-49.
147. Banchero, M.; Ferri, A.; Manna, L.; Sicardi, S., Solubility of disperse dyes in supercritical carbon dioxide and ethanol. Fluid Phase Equilibria 2006, 243 (1), 107-114.
148. Guzel, B.; Akgerman, A., Solubility of Disperse and Mordant Dyes in Supercritical CO2. Journal of Chemical & Engineering Data 1999, 44 (1), 83-85.
149. Shamsipur, M.; Karami, A. R.; Yamini, Y.; Sharghi, H., Solubilities of Some Aminoanthraquinone Derivatives in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2003, 48 (1), 71-74.
150. Haarhaus, U.; Swidersky, P.; Schneider, G. M., High-pressure investigations on the solubility of dispersion dyestuffs in supercritical gases by VIS/NIR-spectroscopy. Part I — 1,4-Bis-(octadecylamino)-9,10-anthraquinone and disperse orange in CO2 and N2O Up to 180 MPa. The Journal of Supercritical Fluids 1995, 8 (2), 100-106.
151. Shinoda, T.; Tamura, K., Solubilities of C.I. Disperse Orange 25 and C.I. Disperse Blue 354 in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2003, 48 (4), 869-873.
152. Baek, J. K.; Kim, S.; Lee, G. S.; Shim, J. J., Density correlation of solubility of C. I. disperse orange 30 dye in supercritical carbon dioxide. The Korean Journal of Chemical Engineering 2004, 21 (1), 230-235.
153. dos Santos, J. C.; Mazzer, H. R.; Machado, G. D.; Andreaus, J.; Cabral, V. F.; Zabaloy, M. S.; Cardozo-Filho, L., High-pressure phase behaviour of the system (CO2+C.I. Disperse Orange 30 dye). The Journal of Chemical Thermodynamics 2012, 48, 284-290.
154. Tamura, K.; Shinoda, T., Binary and ternary solubilities of disperse dyes and their blend in supercritical carbon dioxide. Fluid Phase Equilibria 2004, 219 (1), 25-32.
155. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Solubility of disperse yellow 54 in supercritical carbon dioxide with or without cosolvent. Fluid Phase Equilibria 2007, 260 (2), 287-294.
156. Yamini, Y.; Moradi, M.; Hojjati, M.; Nourmohammadian, F.; Saleh, A., Solubilities of Some Disperse Yellow Dyes in Supercritical CO2. Journal of Chemical & Engineering Data 2010, 55 (9), 3896-3900.
157. Lee, J. W.; Park, M. W.; Bae, H. K., Measurement and correlation of dye solubility in supercritical carbon dioxide. Fluid Phase Equilibria 2000, 173 (2), 277-284.
158. Gordillo, M. D.; Pereyra, C.; Martı́nez de la Ossa, E. J., Measurement and correlation of solubility of Disperse Blue 14 in supercritical carbon dioxide. The Journal of Supercritical Fluids 2003, 27 (1), 31-37.
159. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Solubility of 1,5-Diaminobromo-4,8-dihydroxyanthraquinone in Supercritical Carbon Dioxide with or without Cosolvent. Journal of Chemical & Engineering Data 2009, 54 (5), 1442-1446.
160. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Solubility of C.I. Disperse Violet 1 in Supercritical Carbon Dioxide with or without Cosolvent. Journal of Chemical & Engineering Data 2008, 53 (9), 2163-2169.
161. Alwi, R. S.; Tanaka, T.; Tamura, K., Measurement and correlation of solubility of anthraquinone dyestuffs in supercritical carbon dioxide. The Journal of Chemical Thermodynamics 2014, 74, 119-125.
162. Cygnarowicz, M. L.; Maxwell, R. J.; Seider, W. D., Equilibrium solubilities of β-carotene in supercritical carbon dioxide. Fluid Phase Equilibria 1990, 59 (1), 57-71.
163. Johannsen, M.; Brunner, G., Solubilities of the Fat-Soluble Vitamins A, D, E, and K in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1997, 42 (1), 106-111.
164. Subra, P.; Castellani, S.; Ksibi, H.; Garrabos, Y., Contribution to the determination of the solubility of β-carotene in supercritical carbon dioxide and nitrous oxide: experimental data and modeling. Fluid Phase Equilibria 1997, 131 (1), 269-286.
165. Mendes, R. L.; Nobre, B. P.; Coelho, J. P.; Palavra, A. F., Solubility of β-carotene in supercritical carbon dioxide and ethane. The Journal of Supercritical Fluids 1999, 16 (2), 99-106.
166. Sovová, H.; Stateva, R. P.; Galushko, A. A., Solubility of β-carotene in supercritical CO2 and the effect of entrainers. The Journal of Supercritical Fluids 2001, 21 (3), 195-203.
167. Saldaña, M. D. A.; Sun, L.; Guigard, S. E.; Temelli, F., Comparison of the solubility of β-carotene in supercritical CO2 based on a binary and a multicomponent complex system. The Journal of Supercritical Fluids 2006, 37 (3), 342-349.
168. Fasihi, J.; Yamini, Y.; Nourmohammadian, F.; Bahramifar, N., Investigations on the solubilities of some disperse azo dyes in supercritical carbon dioxide. Dyes and Pigments 2004, 63 (2), 161-168.
169. Ferri, A.; Banchero, M.; Manna, L.; Sicardi, S., A new correlation of solubilities of azoic compounds and anthraquinone derivatives in supercritical carbon dioxide. The Journal of Supercritical Fluids 2004, 32 (1-3), 27-35.
170. Fat′hi, M. R.; Yamini, Y.; Sharghi, H.; Shamsipur, M., Solubilities of Some 1,4-Dihydroxy-9,10-anthraquinone Derivatives in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1998, 43 (3), 400-402.
171. Maeda, S.; Mishima, K.; Matsuyama, K.; Baba, M.; Hirabaru, T.; Ishikawa, H.; Hayashi, K.-i., Solubilities of Azobenzene, p-Hydroxyazobenzene, and p-Dimethylaminoazobenzene in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2001, 46 (3), 647-650.
172. Mishima, K.; Matsuyama, K.; Ishikawa, H.; Hayashi, K.-i.; Maeda, S., Measurement and correlation of solubilities of azo dyes and anthraquinone in supercritical carbon dioxide. Fluid Phase Equilibria 2002, 194-197, 895-904.
173. Cai, Z.-Z., 預測固體溶質於超臨界二氧化碳中的溶解度. http://ir.lib.ncu.edu.tw:88/thesis/view_etd.asp?URN=106324050 2019.
指導教授 謝介銘 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明