博碩士論文 108324032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.116.15.3
姓名 李柏霖(Bo-Lin Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用二階段真空變壓吸附程序捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 現今的科學家認為造成全球暖化是排放過多二氧化碳,因此碳捕獲與存放的技術是很重要的,真空變壓吸附法是一種捕獲煙道氣中二氧化碳的方法之一,此方法是使用吸附劑在混合氣體中不同氣體有不同的吸附選擇性來分離氣體且是連續循環程序的技術,本研究以捕獲燃煤電廠煙道氣中二氧化碳,使用EKIME zeolite 13X為吸附劑,目標為達到塔底產物二氧化碳純度90%以上,回收率90%以上。
首先利用突破曲線實驗和單塔三步驟真空變壓吸附程序實驗捕獲燃煤電廠煙道氣與模擬結果進行驗證,確認模擬程式的可靠性。接著以第一階段二塔六步驟和第二階段單塔三步驟為二階段真空變壓吸附程序模擬分離以經除硫、除水後組成含11% 二氧化碳與89%氮氣的煙道氣,達到塔底產物二氧化碳純度90.33% 和回收率78.82%。
最後以第一階段二塔六步驟進行實驗設計(Design of Experiments, DOE)找出最佳操作條件為當進料壓力4 atm、真空壓力0.05 atm、同向減壓壓力1 atm、塔長80 cm、步驟1/4時間302 s、步驟3/6時間60 s、進料二氧化碳濃度13.76%的操作條件下,可達到塔底二氧化碳純度62.17%、回收率94.75%、能耗1.26 GJ/t-CO2,再經第二階段變壓吸附程序後,最終達到塔底二氧化碳純度90.33%、回收率90.26%,總能耗1.55 GJ/ t-CO2。
摘要(英) The scientists believe the excessive carbon dioxide cause the global warming now. Therefore, the technology of carbon capture and storage is very important. Pressure swing adsorption (PSA) process is one of the methods to capture carbon dioxide in flue gas. This method uses adsorbents to separate gases with different adsorption selectivities in the mixed gas and is a continuous cycle process. This study aims to capture carbon dioxide in the flue gas of coal-fired power plants, and uses zeolite 13X as the adsorbent to achieve a bottom carbon dioxide product with purity 90% and recovery 90%.
To verify the reliability of simulation program, the results of the breakthrough curve experiment and the 1-bed 3-step PSA process experiment, which is used to capture the flue gas of coal-fired power plant, were compared with the simulation results. Both the experiment and simulation results are consistent, which shows that the simulation program is reliable. Next, the first stage 2-bed 6-step PSA and the second stage 1-bed 3-step PSA are used as the two-stage PSA process to simulate the separation of flue gas (11% CO2, 89% N2) after desulphurization and water removal in coal-fired power plant. The simulation results show a bottom product CO2 purity at 90.33% with 78.82% recovery.
Finally, this study combined the simulation of 2-bed 6-step PSA process with design of experiments (DOE) method to find the optimal operating conditions of the first stage PSA. After simulation analysis, the bottom product CO2 purity 62.17% with 94.75% recovery from the first stage PSA was obtained while at feed pressure 4 atm, vacuum pressure 0.05 atm, cocurrent depressurization 1 atm, bed length 80 cm, step 1/4 time 302 s, step 3/6 time 60 s, feed CO2 concentration 13.76% as the optimal results. After the second stage PSA process, we obtained a bottom product CO2 purity at 90.33% with 90.26% total recovery. The total mechanical energy consumption was estimated to be 1.55 GJ/t-CO2.
關鍵字(中) ★ 變壓吸附程序 關鍵字(英)
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xi
第一章、 緒論 1
第二章、 簡介及文獻回顧 6
2-1 吸附之簡介 6
2-1-1 吸附基本原理 6
2-1-2 吸附劑與其選擇性 8
2-2 文獻回顧 10
2-2-1 變壓吸附程序之發展與改進 10
2-2-2 理論之回顧 15
2-3 文獻回顧與研究目的 17
2-3-1 研究目的 17
2-3-2 變壓吸附程序純化二氧化碳之應用 18
第三章、 理論 23
3-1基本假設 24
3-2統制方程式 25
3-3吸附平衡關係式 30
3-3-1 等溫吸附平衡關係式 30
3-3-2 質傳驅動力模式 (Driving force model) 31
3-3-3 吸附熱關係式 31
3-4參數推導 32
3-4-1 軸向分散係數 (Axial dispersion coefficient) 32
3-4-2 熱傳係數 35
3-4-3線性驅動力質傳係數 38
3-5 邊界條件與流速 42
3-5-1 邊界條件與節點流速 42
3-5-2 閥公式 43
3-6 求解步驟 44
第四章、 等溫平衡吸附曲線與突破曲線 47
4-1 吸附平衡 48
4-1-1 氣體與吸附劑性質 48
4-1-2 等溫平衡吸附曲線(Adsorption equilibrium isotherm) 50
4-2 吸附動力學 53
4-2-1 突破曲線 53
4-2-2 台中電廠吸附塔之突破曲線模擬驗證 55
第五章、 製程描述 58
5-1 二階段(二塔六步驟、單塔三步驟)變壓吸附程序 59
5-1-1 第一階段(二塔六步驟)變壓吸附程序 60
5-1-2 第二階段(單塔三步驟)變壓吸附程序 62
5-2 能耗及產率計算公式 64
第六章、 數據分析與結果討論 66
6-1 單塔三步驟變壓吸附法捕獲煙道氣中二氧化碳之驗證 67
6-2 兩階段(兩塔六步驟、單塔三步驟)變壓吸附程序捕獲煙道氣中二氧化碳之模擬和結果 69
6-3 燃煤電廠煙道氣第一階段(兩塔六步驟)變壓吸附程序模擬之實驗設計 73
6-3-1 反應曲面法 (Response surface methodology, RSM) 74
6-3-2 殘差分析圖 (Analysis of residual plots) 77
6-3-3 變異數分析 (Analysis of Variance, ANOVA) 80
6-3-4 回歸分析 (Regression analysis)及最適化結果 87
6-3-3-1 塔底二氧化碳純度與回收率最大值 90
6-3-3-2 塔底二氧化碳純度與回收率最大值和能耗最小值 95
6-3-3-3 探討第一階段PSA步驟3/6時間的影響 99
第七章、 結論 109
符號說明 111
參考文獻 116
附錄A、流速之估算方法 123
附錄B、中央合成設計實驗的參數與各響應值 127
附錄C、無因次化迴歸模型係數 141
參考文獻 [1] P. Friedlingstein, M. O′Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin, L. E. O. C. Aragão, A. Arneth, V. Arora, N. R. Bates, M. Becker, A. Benoit-Cattin, H. C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R. A. Houghton, T. Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J. I. Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, Y. Niwa, K. O′Brien, T. Ono, P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P. Smith, A. J. Sutton, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, G. van der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue and S. Zaehle, Global Carbon Budget 2020, Earth System Science Data, vol. 12, pp. 3269–3340, 2020.
[2] 經濟部能源局, 108年能源統計手冊, June 2020.
[3] 台灣電力股份有限公司, https://www.taipower.com.tw/tc/Chart.aspx?mid=194.
[4] IEA, Global Energy Review: CO2 Emissions in 2020, https://www.iea.org/reports/global-energy-review-2020/global-energy-and-co2-emissions-in-2020.
[5] 行政院環境保護署, 溫室氣體排放統計, https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b%E3%80%80.
[6] 李元亨, 什麼是碳捕存(CCS)?原理及重要性, https://scitechvista.nat.gov.tw/c/sffl.htm, 2017.
[7] 楊閎舜,周正堂, 變壓吸附程序在二氧化碳捕獲技術之發展與研究, 化工, 63卷1期, pp. 83-97, 2016.
[8] 談駿嵩,王志盈, 二氧化碳捕獲, 科學發展, 510期, pp. 32-37, 2015.
[9] 張育誠, 吳國光, 焦鴻文, 簡國祥, 歐陽湘, 富氧燃燒技術之應用與分析, 台灣能源期刊, 二卷3期, pp. 323-331, 2015.
[10] C. Chao, Y. Deng, R. Dewil, J. Baeyens and X. Fan, Post-combustion carbon capture, Renewable and Sustainable Energy Reviews, vol. 138, article 110490, 2021.
[11] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, PhD thesis, Carnegie Mellon University, Pittsburgh, 2010.
[12] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[13] S. U. Rege and R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[14] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960.
[15] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, London, 1988.
[16] W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal Chemical Engineering, vol. 20, pp. 617-623, 2003.
[17] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[18] P. G. de Montgareuil and D. Domine, Process for Separating a Binary Gaseous Mixture by Adsorption, US Patent 3155468, 1964.
[19] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[20] K. Chihara and M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[21] J. J. Collins, Air Separation by Adsorption, US Patent 4026680, 1975.
[22] S. J. Doong and R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[23] L. Jiang, V.G. Fox and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[24] E. Rudelstorfer and A. Fuderer, Selective Adsorption Process, US Patent 3986849, 1976.
[25] P. H. Turnock and R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[26] R.T. Yang and S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[27] S. Farooq and D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990
[28] E. Glueckauf and J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[29] M. Alibolandi, S. M. Sadrameli, F. Rezaee and J. T. Darian, Separation of CO2/N2 mixture by vacuum pressure swing adsorption (PSA) using zeolite 13X type and carbon molecular sieve adsorbents, Heat and Mass Transfer, vol. 56, p. 1985–1994, 2020.
[30] G. N. Nikolaidis, E. S. Kikkinides and M. C. Georgiadis, An Integrated Two-stage P/VSA Process for Postcombustion CO2 Capture Using COmbination of Adsorbents Zeolite 13X and Mg-MOF-74, Industrial & Engineering Chemistry Research, vol. 56(4), pp. 974-988, 2017.
[31] D. Wawrzyńczak, I. M.-Kucęba, K. Srokosz, M. Kozak, W. Nowak, J. Zdeb, W. Smółka and A. Zajchowski, The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas, Separation and Purification Technology, vol. 209, pp. 560-570, 2019.
[32] R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, Optimization of One- and Two-Staged Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve, Industrial & Engineering Chemistry Research, vol. 53, pp. 9186–9198, 2014.
[33] C. Shen, Z. Liu, P. Li and J. Yu, Two-Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads, Industrial & Engineering Chemistry Research, vol. 51, pp. 5011–5021, 2012.
[34] Z. Liu, L. Wang, X. Kong, P. Li, J. Yu and A. E. Rodrigues, Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant, Industrial & Engineering Chemistry Research, vol. 51, pp. 7355-7363, 2012.

[35] Q. Huang and M. Eic´, Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process, Separation and Purification Technology, vol. 103, pp. 203-215, 2013.
[36] L. Wang, Z. Liu, P. Li, J. Wang and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption Journal of the International Adsorption Society, vol. 18, pp. 445-459, 2012.
[37] Z. Liu, C. A. Grande, P. Li, J. Yu and A. E. Rodrigues, Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas, Separation and Purification Technology, vol. 81(3), pp. 307-317, 2011.
[38] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata and Y. Kageyama, Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energy Conversion and Management, vol. 37, pp. 929-933, 1996.
[39] Y. Shen, Y. Zhou, D. Li, Q. Fu, D. Zhang and P. Na, Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas, International Journal of Greenhouse Gas Control, vol. 65, pp. 55-64, 2017.
[40] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology, Chinese Journal of Chemical Engineering, vol. 24(4), pp. 460-467, 2016.
[41] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[42] J J. H. Park, H. T. Beum, Jg. N. Kim and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[43] C.T. Chou and C.Y. Chen, Carbon Dioxide Recovery by Vacuum Swing Adsorption, Separation and Purification Technology, no. 39, pp. 51-65, 2004.
[44] D. Duong, Adsorption analysis: equilibria and kinetics, Imperial College Press, London, 1998.
[45] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[46] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[47] E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[48] E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[49] D. F. Fairbanks and C.R. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[50] W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[51] W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954
[52] S. Farooq and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of The one-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[53] N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[54] G. Carta and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[55] J. Karger, D. M. Ruthven and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, Wiley, Hoboken, 2008.
[56] M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[57] K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic study of diffusion in molecular-sieving carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[58] H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[59] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[60] M. I. Hossain, C. E. Holland, A. D. Ebner and J. A. Ritter, Mass Transfer Mechanisms and Rates of CO2 and N2 in 13X Zeolite from Volumetric Frequency Response, Industrial & Engineering Chemistry Research, vol. 58, pp. 21679-21690, 2019.
[61] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[62] 李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 碩士論文, 國立中央大學化學工程與材料工程學系, 2015.
[63] J. M. Smith and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill, New York, 1987.
[64] 郭家禎, 利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗研究, 碩士論文, 國立中央大學化學工程與材料工程學系, 2020.
[65] 鄭筑勻, 以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析, 碩士論文, 國立中央大學化學工程與材料工程學系, 2019.
[66] 張鈞翔, 利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究, 碩士論文, 國立中央大學化學工程與材料工程學系, 2020.
[67] 魏子倫, 改善三塔真空變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析, 碩士論文, 國立中央大學化學工程與材料工程學系, 2020.
[68] A. Golmakani, S. Fatemi and J. Tamnanloo, CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[69] R. C. Patel and C. J. Karamchandani, Elements of Heat Engines, 8th ed., Acharya, Vadodara, 1997.
[70] 田賀文, 以反應曲面法建立旋鍛製程之菇狀預測模型, 碩士論文, 國立中央大學機械工程學系, 2013.
[71] G. E. P. Box and N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, 1987.
[72] R. H. Myers, D. C. Montgomery, Response Surface Methodology, John Wiley & Sons, New York, 1995.
[73] 葉怡成, 實驗規劃-製程與產品最佳化, 五南圖書出版公司, 台北市, ISBN:9571124087, 2005.
[74] D. C. Montgomery, Design and Analysis of Experiments, 7E International Student Version, 7th ed., John Wiley & Sons Ltd., Hoboken, 2009.
[75] K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明