博碩士論文 108324042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.224.33.107
姓名 陳薪富(Hsin-Fu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 電化學輔助紫外光/氯程序應用於水楊酸降解之研究
(Study of Degradation of Salicylic Acid Using Electrochemically Assisted UV/Chlorine Process)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究
★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究
★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 近年來新興汙染物開始廣受關注,在這當中又以藥物及個人保健用品使用最為頻繁,由於傳統水處理方法無法有效地完全去除此類化學品,因此容易微量地殘留於水體中,造成生態環境與人體的危害。高級氧化程序成為一個可以去除新興汙染物的方法,尤其是結合紫外光的高級氧化程序。相比其他UV/高級氧化程序,UV/chlorine程序具有成本效益且降解效能在某些汙染物上更具有優勢。故本研究主要目標為利用UV/chlorine程序結合電化學方式來降解水楊酸這種新興汙染物,並依據實驗結果歸納出最佳操作條件,評估此程序應用於水楊酸降解的可行性。
研究主要分成三部分,第一部分為以投藥方式加入次氯酸鈉於系統中,觀察其降解水楊酸的可行性。第二部分為在系統中以電化學方式將氯離子氧化生成自由氯(次氯酸根離子、次氯酸),不需外加任何氧化劑;第三部分為加入紫外光,並結合第二部分的電化學生成自由氯。研究結果顯示,最佳操作條件為電流密度5 mA cm-2,氯離子濃度0.05M及pH 4。水楊酸降解會符合擬一階反應。經過反應時間60分鐘後,水楊酸降解效率可達96%,反應常數為0.0544 min-1。在加入紫外光後能增強水楊酸降解的效率,並且降低反應的活化能,其主要歸功於自由基的生成。UV/chlorine降解水楊酸也會符合擬一階反應。在反應時間60分鐘內已降解水楊酸超過99%,反應常數為0.0844 min-1。最後推導水楊酸的降解途徑會先從自由基在苯環上的取代反應開始,經過去羧酸與奪氫反應後形成鄰苯二酚和1,2-苯醌,再經裂環後形成不飽和產物,最終礦化成二氧化碳與水,同時消毒副產物(DBP)也會在程序中生成。
摘要(英) In recent years, emerging pollutants have attracted widespread attention. Among them, pharmaceuticals and personal care products are used most frequently. Conventional wastewater treatment cannot remove these chemicals effectively, which leads to trace remain in water body, causing ecological and human health problems. Advanced oxidation processes (AOPs) have become a method that can remove emerging pollutants effectively, especially the UV-based AOPs. Compared with other UV-based AOPs, UV/chlorine process is more cost-effective and the degradation efficiency is more advantageous in certain pollutants. Therefore, this study used UV/chlorine process which was combined with electrochemical process to degrade salicylic acid (SA), which was a kind of emerging pollutants. Then, according to the results to optimize the operating condition and assess the feasibility of this process for degrading SA.
This research was divided into three part: First, sodium hypochlorite was added into the system to confirm the feasibility of degradation of SA by chlorine; Second, the free chlorine(including hypochlorite and hypochlorous acid) was electrochemically oxidized from chloride in the system, without adding additional oxidant. Third, the electro-generated free chlorine was irradiated by UV irradiation. In the results, the optimal operating condition of current density, chloride concentration and pH value were found to be 5 mA cm-2, 0.05M and pH 4, respectively. The SA degradation conformed pseudo first order reaction. After 60-min reaction, the SA degradation efficiency could reach 96% and the reaction constant was 0.0544 min-1. It was found that UV irradiation could enhance the degradation and reduce the activated energy because of the generation of free radicals. Also, the SA degradation by UV/chlorine conformed pseudo first order reaction. After 60-min reaction, the SA degradation efficiency could reach >99%, and the reaction constant was 0.0844 min-1. Finally, a possible degradation pathway was proposed that SA degradation initiated by substitution reaction on benzene ring by radicals. Moreover, catechol and 1,2-Benzoquinone may be form by decarboxylation and hydrogen abstraction. Then, ring opening may occur to formed unsaturated products and mineralize to CO2 and water finally. Disinfection by-product (DBP) may also be formed during the SA degradation.
關鍵字(中) ★ 紫外光/氯
★ 水楊酸
★ 電化學
★ 汙水處理
關鍵字(英) ★ UV/chlorine
★ Salicylic acid
★ Electrochemistry
★ Wastewater treatment
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 3
第二章 文獻回顧 4
2-1 新興汙染物(Emerging Pollutants, EPs) 4
2-1-1 藥物及個人保健用品(Pharmaceuticals and personal care products, PPCPs) 5
2-2 次氯酸鈉 7
2-3 高級氧化程序(AOPs) 8
2-4 電化學高級氧化程序(Electrochemical AOPs, EAOPs) 10
2-4-1 電化學原理 10
2-4-2 直接電解氧化(Direct electrolysis oxidation) 11
2-4-3 間接電解氧化(Indirect electrolysis oxidation) 12
2-4-4 電生成活性氯 13
2-5 UV/高級氧化程序(UV-based AOPs) 17
2-5-1 光芬頓(Photo-Fenton)程序 17
2-5-2 光化學(photochemical)氧化程序 18
2-5-3 UV/H2O2氧化程序 20
2-5-4 UV/O3氧化程序 21
2-5-5 UV/Chlorine氧化程序 22
2-5-6 其他UV/AOP氧化程序 28
2-6 含水楊酸之廢水 31
2-6-1水楊酸簡介 31
2-6-2 水楊酸對環境的危害 32
2-6-3 水楊酸廢水處理技術 33
第三章 實驗方法 36
3-1 實驗架構 36
3-2 實驗材料與設備 38
3-2-1 實驗材料 38
3-2-2 實驗設備 39
3-3 實驗方法與步驟 40
3-3-1 水楊酸檢量線繪製 40
3-3-2 測定方法 40
3-3-3 外加次氯酸鈉實驗 41
3-3-4 電化學輔助實驗 42
3-3-5 電化學輔助UV/chlorine實驗 43
3-4 分析儀器介紹 45
3-4-1高效液相層析儀(High Performance Liquid Chromatography, HPLC) 46
3-4-2液相層析質譜儀(Liquid Chromatograph/Mass Spectrometer, LC/MS) 47
第四章 結果與討論 48
4-1 外加次氯酸鈉進行水楊酸之去除 48
4-1-1 水楊酸初始濃度影響 48
4-1-2 動力學探討 49
4-1-3 pH值的影響 52
4-1-4 UV光的影響 53
4-2 電化學輔助進行水楊酸之去除 54
4-2-1 溶液pH值的影響 54
4-2-2 電流密度的影響 56
4-2-3 氯離子濃度的影響 59
4-3 電化學輔助UV/chlorine程序進行水楊酸之去除 61
4-3-1 pH值的影響及其動力學分析 61
4-3-2 UV光的增強效應 63
4-3-3 UV光量子強度的影響 65
4-3-4 自由基的影響 66
4-3-5 活化能之變化 69
4-3-6 重複利用性 72
4-3-7 水楊酸之降解途徑 73
第五章 結論 82
參考資料 83
附錄 95
參考文獻 [1] V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. Ploeg, S.E.A.T.M. van de Zee, C. J.Ritsema, "Emerging pollutants in the environment: A challenge for water resource management," International Soil and Water Conservation Research, vol. 3, pp. 57-65, 2015.
[2] I. Kim, H. Tanaka, "Photodegradation characteristics of PPCPs in water with UV treatment," Environment International, vol. 35, pp. 793-802, 2009.
[3] B. Garza-Campos, E. Brillas, A. Hernández-Ramírez, A. El-Ghenymy, J.L. Guzmán-Mar, E. Ruíz-Ruíz, "Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis, " Journal of Hazardous Materials, vol. 319, pp. 34-42, 2016.
[4] M.J. Watts, K.G. Linden, "Chlorine photolysis and subsequent OH radical production," Water Research, vol. 41, pp. 2871-2878, 2007.
[5] YH. Chuang, S. Chen, C.J. Chinn, W.A. Mitch, "Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse," Environmental Science & Technology, vol. 51, p. 13859-13868, 2017.
[6] C. Teodosiu, A.F. Gilca, G. Barjoveanu, S. Fiore, "Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment," Journal of Cleaner Production, vol. 197, p. 1210-1221, 2018.
[7] J. Fawell, C.N. Ong, "Emerging Contaminants and the Implications for Drinking Water," International Journal of Water Resources Development, vol. 28, pp. 247-263, 2012.
[8] D. Awfa, M. Ateia, M. Fujii, M.S. Johnson, C. Yoshimura, "Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature," Water Research, vol. 142, pp. 26-45, 2018.
[9] M. Huerta-Fontela, M.T. Galceran, F. Ventura, "Occurrence and removal of pharmaceuticals and hormones through drinking water treatment," Water Research, vol. 45, p. 1432-1442, 2011.
[10] K. McClellan, R.U. Halden, "Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey, " Water Research,vol. 44, pp. 658-668, 2010.
[11] M.M. Huber, T.A. Ternes, "Oxidation of pharmaceuticals during water treatment with chlorine dioxide," Water Research, vol. 39, pp. 3607-3617, 2005.
[12] K. Guo, Z. Wu, C. Shang, B. Yao, S. Hou, X. Yang, W. Song, J. Fang, "Radical Chemistry and Structural Relationships of PPCP Degradation by UV/Chlorine Treatment in Simulated Drinking Water," Environmental Science & Technology, vol. 51, p. 10431-10439, 2017.
[13] F. Racioppi, P.A. Daskaleros, N. Besbelli, A. Borges, C. Deraemaeker, S.I. Magalini, R.M. Arrifta, C. Pulce, M.L. Ruggerone, P. Vlachos, "Household bleaches based on sodium hypochlorite: Review of acute toxicology and poison control center experience," Food and Chemical Toxicology, vol. 32, pp. 845-861, 1994.
[14] D. Kanakaraju, B.D. Glass, M. Oelgemoller, "Advanced oxidation process-mediated removal of pharmaceuticals from water: A review," Journal of Environmental Management, vol. 219, pp. 189-207, 2018.
[15] I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, "Electrochemical advanced oxidation processes: today and tomorrow. A review," Environmental Science and Pollution Research, vol. 21, pp. 8336-8367, 2014.
[16] S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment, vol. 3, IWA, 2005.
[17] H. Olvera-Vargas, N. Oturan, E. Brillas, D. Buisson, G. Esposito, M.A. Oturan, "Electrochemical advanced oxidation for cold incineration of the pharmaceutical ranitidine: Mineralization pathway and toxicity evolution," Chemosphere, vol. 177, pp. 644-651, 2014.
[18] N. Oturan, E.D. van Hullebusch, H. Zhang, L. Mazeas, H. Budzinski, K. Le Menach, M.A. Oturan, "Occurrence and removal of organic micropollutants in landfill leachates treated by electrochemical advanced oxidation processes," Environmental Science & Technology, vol. 49, p. 12187-12196, 2015.
[19] S. Garcia-Segura, J.D. Ocon, MN Chong, "Electrochemical Oxidation Remediation of Real Wastewater Effluents - A review," Process Safety and Environmental Protection, vol. 113, pp. 48-67, 2018.
[20] 張博荀, H2O2/Fe2+化學氧化法處理反應性染料-BlackB之研究, 國立成功大學:碩士論文, 民國93年。
[21] C.A. Martínez-Huitle, M. Panizza, "Electrochemical oxidation of organic pollutants for wastewater treatment," Current Opinion in Electrochemistry, vol. 11, pp. 62-71, 2018.
[22] 彭筱琪, 運用媒介物光電化學氧化法降解磺胺類抗生素及探討氫氧自由基生成之研究, 弘光科技大學:碩士論文, 民國107年。
[23] S. Garcia-Segura, J. Keller, E. Brillas, J. Radjenovic, "Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment," Journal of Hazardous Materials, vol. 283, pp. 551-557, 2015.
[24] D.C. de Moura, C.K.C. de Araújo, C.L.P.S. Zanta, R. Salazar, C.A. Martínez-Huitle, "Active chlorine species electrogenerated on Ti/Ru0.3Ti0.7O2 surface: Electrochemical behaviour, concentration determination and their application," Journal of Electroanalytical Chemistry, vol. 731, pp. 145-152, 2014.
[25] A. Baddouh, G.G. Bessegato, M.M. Rguiti, B. El Ibrahimi, L. Bazzi, M. Hilali, M.V.B. Zanoni, "Electrochemical decolorization of Rhodamine B dye: Influence of anode material, chloride concentration and current density," Journal of Environmental Chemical Engineering, vol. 6, pp. 2041-2047, 2018.
[26] R. Salazar, M.S. Ureta-Zañartu, C. González-Vargas, C.N. Brito, C.A. Martinez-Huitle, "Electrochemical degradation of industrial textile dye disperse yellow 3: Role of electrocatalytic material and experimental conditions on the catalytic production of oxidants and oxidation pathway," Chemosphere, vol. 198, pp. 21-29, 2018.
[27] S. Ferro, A. de Battisti, I. Duo, Ch. Comninellis, W. Haenni, A. Perret, "Chlorine Evolution at Highly Boron‐Doped Diamond Electrodes," Journal of The Electrochemical Society, vol. 147, pp. 2614-2619, 2000.
[28] N. Klidi, D. Clematis, M. Delucchi, A. Gadri, S. Ammar, M. Panizza, "Applicability of electrochemical methods to paper mill wastewater for reuse. Anodic oxidation with BDD and TiRuSnO2 anodes," Journal of Electroanalytical Chemistry, vol. 815, pp. 16-23, 2018.
[29] J.F. Carneiro, J.M. Aquino, A.J. Silva, J.C. Barreiro, Q.B. Cass, R.C. Rocha-Filho, "The effect of the supporting electrolyte on the electrooxidation of enrofloxacin using a flow cell with a BDD anode: Kinetics and follow-up of oxidation intermediates and antimicrobial activity," Chemosphere, vol. 206, pp. 674-681, 2018.
[30] Z. Zhang, J.Xian, C. Zhang, D. Fu, "Degradation of creatinine using boron-doped diamond electrode: Statistical modeling and degradation mechanism," Chemosphere, vol. 182, pp. 441-449, 2017.
[31] A.S. Fajardo, H.F. Seca, R.C. Martins, V.N. Corceiro, I.F. Freitas, M.E. Quinta-Ferreira, R.M. Quinta-Ferreira, "Electrochemical oxidation of phenolic wastewaters using a batch-stirred reactor with NaCl electrolyte and Ti/RuO2 anodes," Journal of Electroanalytical Chemistry, vol. 785, pp. 180-189, 2017.
[32] L. Shan, J. Liu, J.J. Ambuchi, Y. Yu, L. Huang, Y. Feng, "Investigation on decolorization of biologically pretreated cellulosic ethanol wastewater by electrochemical method," Chemical Engineering Journal, vol. 323, pp. 455-464, 2017.
[33] G. Pliego, J.A. Zazo, P. Garcia-Muñoz, M. Munoz, J.A. Casas, J.J. Rodriguez, "Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview," Critical Reviews in Environmental Science and Technology, vol. 45, pp. 2611-2692, 2015.
[34] J.J. Pignatello, E. Oliveros, A. MacKay, "Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry, " Critical Reviews in Environmental Science and Technology, vol. 36, pp. 1-84, 2006.
[35] C.A. Martínez-Huitle, M.A. Rodrigo, I. Sirés, O. Scialdone, "Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review," Chemical Reviews, vol. 115, p. 13362-13407, 2015.
[36] MH Zhang, H. Dong, L. Zhao, D. Wang, D. Meng, "A review on Fenton process for organic wastewater treatment based on optimization perspective," Science of the Total Environment, vol. 670, pp. 110-121, 2019.
[37] WK Jo, R.J. Tayade, "New generation energy-efficient light source for photocatalysis: LEDs for environmental applications," Industrial & Engineering Chemistry Research, vol. 53, pp. 2073-2084, 2014.
[38] M. Widel, A. Krzywon, K. Gajda, M. Skonieczna, J. Rzeszowska-Wolny, "Induction of bystander effects by UVA, UVB, and UVC radiation in human fibroblasts and the implication of reactive oxygen species," Free Radical Biology and Medicine, vol. 68, pp. 278-287, 2014.
[39] A. Fujishima, K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, vol. 238, pp. 37-38, 1972.
[40] G. Sujatha, S. Shanthakumar, F. Chiampo, "UV Light-Irradiated Photocatalytic Degradation of Coffee Processing Wastewater Using TiO2 as a Catalyst," environments, vol. 7, p. 47, 2020.
[41] K. Guo, Z. Wu, S. Yan, B. Yao, W. Song, Z. Hua, X. Zhang, X. Kong, X. Li, J. Fang, "Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements," Water Research, vol. 147, pp. 184-194, 2018.
[42] A. Duran, J.M. Monteagudo, I. San Martín, S. Merino, "Photocatalytic degradation of aniline using an autonomous rotating drum reactor with both solar and UV-C artificial radiation," Journal of Environmental Management, vol. 210, pp. 122-130, 2018.
[43] A.M. Chávez, O. Gimeno, A. Reya, G. Pliego, A.L. Oropesa, P.M. Álvarez, F.J. Beltrán, "Treatment of highly polluted industrial wastewater by means of sequential aerobic biological oxidation-ozone based AOPs," Chemical Engineering Journal, vol. 361, pp. 89-98, 2019.
[44] Y. Wang, H. Li, P. Yi, H. Zhang, "Degradation of clofibric acid by UV, O3 and UV/O3 processes: Performance comparison and degradation pathways," Journal of Hazardous Materials, vol. 379, p. 120771, 2019.
[45] M.S. Lucas, J.A. Peres, G.L. Puma, "Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics," Separation and Purification Technology, vol. 72, pp. 235-241, 2010.
[46] N. Kishimoto, "State of the Art of UV/Chlorine Advanced Oxidation Processes: Their Mechanism, Byproducts Formation, Process Variation, and Applications," Journal of Water and Environment Technology, vol. 17, pp. 302-335, 2019.
[47] N. Kishimoto, H. Nishimura, "Effect of pH and molar ratio of pollutant to oxidant on a photochemical advanced oxidation process using hypochlorite," Environmental Technology, vol. 36, pp. 1-19, 2015.
[48] C.L. Thomsen, D. Madsen, J.A. Poulsen, J. Thøgersen, S.J.K. Jensen, S.R. Keiding, "Femtosecond photolysis of aqueous HOCl," Journal of Chemical Physics, vol. 115, pp. 9361-9369, 2001.
[49] G.V. Buxton, M.S. Subhani, "Radiation chemistry and photochemistry of oxychlorine ions. Part 2.—Photodecomposition of aqueous solutions of hypochlorite ions," Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol. 68, pp. 958-969, 1972.
[50] J. Fang, Y. Fu, C. Shang, "The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System," Environmental Science & Technology, vol. 48, pp. 1859-1868, 2014.
[51] G.V. Buxton, M. Bydder, G.A. Salmon, J.E. Williams, "The reactivity of chlorine atoms in aqueous solution. Part III. The reactions of Cl• with solutes," Physical Chemistry Chemical Physics, vol. 2, pp. 237-245, 2000.
[52] D. Minakata, D. Kamath, S. Maetzold, "Mechanistic insight into the reactivity of chlorine-derived radicals in the aqueous-phase UV–Chlorine advanced oxidation process," Environmental Science & Technology, vol. 51, pp. 6918-6926, 2017.
[53] K. Hasegawa, P. Neta, “Rate constants and mechanisms of reaction of chloride (Cl2- ) radicals,” The Journal of Physical Chemistry, vol. 82, pp. 854-857, 1978.
[54] X. Kong, Z. Wu, Z. Ren, K. Guo, S. Hou, Z. Hua, X. Li, J. Fang, "Degradation of lipid regulators by the UV/ chlorine process: Radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes," Water Research, vol. 137, pp. 242-250, 2018.
[55] Z.B. Alfassi, R.E. Huie, S. Mosseri, P. Neta, "Kinetics of one-electron oxidation by the ClO radical," International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, vol. 32, pp. 85-88, 1988.
[56] S.A. Green, N.V. Blough, "Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters," Limnology and Oceanography, vol. 39, pp. 1903-1916, 1994.
[57] E. Rott , B. Kuch, C. Lange, P. Richter, A. Kugele, R. Minke, "Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H2O2 Advanced Oxidation Treatment at Pilot Scale," International Journal of Environmental Research and Public Health, vol. 15, p. 935, 2018.
[58] X. Kong, J. Jiang, J. Ma, Y. Yang, W. Liu, Y. Liu, "Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products," Water Research, vol. 90, pp. 15-23, 2016.
[59] Y. Zhu, M. Wu, N. Gao, W. Chu, K. Li, S. Chen, "Degradation of phenacetin by the UV/chlorine advanced oxidation process: Kinetics, pathways, and toxicity evaluation," Journal of Water and Environment Technology, vol. 17, pp. 302-335, 2019.
[60] M. Pan, Z. Wu, C. Tang, K. Guo, Y. Cao, J. Fang, "Emerging investigators series: comparative study of naproxen degradation by the UV/chlorine and the UV/H2O2 advanced oxidation processes," Environmental Science: Water Research & Technology, vol.4, pp. 1219-1230, 2018.
[61] G. Hurwitz, P. Pornwongthong, S. Mahendra, E.M.V. Hoek, "Degradation of phenol by synergistic chlorineenhanced photo-assisted electrochemical oxidation," Chemical Engineering Journal, vol. 240, pp. 235-243, 2014.
[62] B. Nikravesh, A. Shomalnasab, A. Nayyer, N. Aghababaei, R. Zarebi, F. Ghanbari, "UV/Chlorine process for dye degradation in aqueous solution: Mechanism, affecting factors and toxicity evaluation for textile wastewater, " Journal of Environmental Chemical Engineering, vol. 8, p. 104244, 2020.
[63] XR Xu, XZ Li, "Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion," Separation and Purification Technology, vol. 72, pp. 105-111, 2010.
[64] YQ Gao, NY Gao, Y. Deng, YQ Yang, Y. Ma, "Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water," Chemical Engineering Journal, vol. 195, pp. 248-253, 2012.
[65] CC Lin, MS Wu, "Degradation of ciprofloxacin by UV/S2O82− process in a large photoreactor," Journal of Photochemistry and Photobiology A: Chemistry, vol. 285, pp. 1-6, 2014.
[66] C. Sichel, C. Garcia, K. Andre, "Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants," Water Research, vol. 45, pp. 6371-6380, 2011.
[67] T.P. Delaney, S. Uknes, B. Vernooij, L. Friedrich, K. Weymann, D. Negrotto, T. Gaffney, M. Gut-Rell, "A Central Role of Salicylic Acid in Plant Disease Resistance," Science, vol. 266, pp. 1247-1250, 1994.
[68] Q. Hayat, S. Hayat, M. Irfana, A. Ahmad, "Effect of exogenous salicylic acid under changing environment: A review," Environmental and Experimental Botany, vol. 68, pp. 14-25, 2010.
[69] R.K. Madan, J. Levitt, "A review of toxicity from topical salicylic acid preparations," Journal of the American Academy of Dermatology, vol. 70, pp. 788-792, 2014.
[70] B. LL, Goodman and Gilman’s the pharmacological basis of therapeutics. 12th ed, New York, 2010, pp. 977-82.
[71] A. Hessel, A. Lin, A. Hessel, A. Lin, "Agents used for treatment of hyperkeratosis. In: Wolverton SE, editor. Comprehensive dermatologic drug therapy. 1st ed. Philadelphia: Saunders; 2001. pp. 671-4.
[72] K.T. Ranjit, I.Willner, S.H. Bossmann, A.M. Braun, "Lanthanide Oxide Doped Titanium Dioxide Photocatalysts : Effective Photocatalysts for the Enhanced Degradation of Salicylic Acid and t-Cinnamic Acid," Journal of Catalysis, vol. 204, pp. 305-313, 2001.
[73] A. Nageswara Rao, B. Sivasankar, V. Sadasivam, "Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst," Journal of Hazardous Materials, vol. 166, p. 1357–1361, 2009.
[74] Y. Wang, Y. Wang, L. Yu, JY Wang, BB Du, XD Zhang, "Enhanced catalytic activity of templated-double perovskite with 3D network structure for salicylic acid degradation under microwave irradiation: Insight into the catalytic mechanism," Chemical Engineering Journal, vol. 368, pp. 115-128, 2019.
[75] Y. Wang, L. Yu, R. Wang, Y. Wang, X. Zhang, "Microwave catalytic activities of supported perovskite catalysts MOx/LaCo0.5Cu0.5O3@CM (M = Mg, Al) for salicylic acid degradation," Journal of Colloid and Interface Science, vol. 564, pp. 392-405, 2020.
[76] C.K. Scheck, F.H. Frimmel, "Degradation of phenol and salicylic acid by ultraviolet radiation/hydrogen peroxide/oxygen," Water Research, vol. 29, pp. 2346-2352, 1995.
[77] TH Chu, DH Tseng, "The Study of the Decomposition of Dichlorobezene in Aqueous Solution by UV/H2O2 System," Journal of Chinese Agricultural Engineering, vol. 48, 2002.
[78] Y. Wang, Y. Xue, C. Zhang, "Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance," Science of the Total Environment, vol. 712, p. 136501, 2020.
[79] L. Szpyrkowicz, C. Juzzolino, S.N. Kaul, S. Daniele, M.D. De Faveri, "Electrochemical Oxidation of Dyeing Baths Bearing Disperse Dyes," Industrial & Engineering Chemistry Research, vol. 39, pp. 3241-3248, 2000.
[80] O. Scialdone, S. Randazzo, A. Galia, G. Silvestri, "Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl," Water Research, vol. 43, pp. 2260-2272, 2009.
[81] H. Park, C.D. Vecitis, M.R. Hoffmann, "Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species," The Journal of Physical Chemistry C, vol. 113, pp. 7935-7945, 2009.
[82] JF Jen, MF Leu, T.C. Yang, "Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography," Journal of Chromatography A, vol. 796, pp. 283–288, 1998.
[83] C. Wu, A. De Visscher, I.D. Gates, "Reactions of hydroxyl radicals with benzoic acid and benzoate," RSC Advances, vol. 7, pp. 35776-35785, 2017.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2021-9-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明