博碩士論文 108324054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.118.152.234
姓名 陳彥霖(Yen-Lin Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
(The Study of Si/SiOx/Al2O3 Coated on Carbon Fibers as Composite Anode Using Recycled Solar Cells for Lithium-Ion Battery)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究
★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究
★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 太陽能產業的迅速成長下,廣設的太陽能模組壽命終止時所產生的大量廢棄物會對環境造成極大的傷害,使得太陽能模組相關的回收研究成為一個重要的議題。太陽能模組中有許多部件得以回收,而現行的回收方法多以純化提煉有價元素為主,此種方法雖可以有效回收廢棄物,但往往需要高溫熱處理及使用腐蝕液體,若沒有妥善處理將會對環境造成二次傷害,因此研發一種對環境友善的回收方式是必須的。目前市場上以矽太陽能模組為最主要的技術,而矽同時也被視為是一種非常有潛力的鋰離子電池負極材料,因此本研究著重於再利用廢棄太陽能模組中的太陽能電池,有別於以往純化提煉的回收方法,此處提出一個簡單的製程直接再製廢棄太陽能電池。本研究透過濕式球磨法製備Si/SiOx/Al2O3複合材料,並與碳紙基材製成複合式負極應用於鋰離子電池中。此實驗探討不同研磨時間及轉速下對Si/SiOx/Al2O3造成的影響,並定義出最佳參數。根據結果顯示隨著研磨時間或轉速的提升,Si/SiOx/Al2O3粉體的團聚現象及氧化程度將會增加,且該複合式電極在500 rpm轉速下研磨2個小時呈現最佳的電化學性能,即使在2000 mA/g的速率下仍保持866 mAh/g的放電容量,而在200 mA/g速率下第100次循環後也仍擁有1423 mAh/g的放電容量和74.5%的容量保持率。
此外,本實驗還更進一步研究表面改質後的碳紙基材對於整體複合式負極的電化學性能影響,從結果顯示含有氮官能基的碳紙有助於更加提升整體的電化學表現。跟未改質的碳紙相比,在200 mA/g的速率下進行循環壽命測試,其在100次循環後放電容量和容量保持率分別提高至1603 mAh/g和90.6%,顯示氮的摻雜有助於提升複合式負極在循環中的電化學穩定性和放電電容量。本實驗表明廢棄太陽能電池可以透過簡單且環保的製程再製成Si/SiOx/Al2O3複合材料,並結合碳纖維基材形成高效能的鋰電池負極。
摘要(英) With the rapid growth of the solar energy industry, the large amount of end-of-life solar modules will cause negative environmental impacts. Recycling of end-of-life solar modules will become a critical issue for next decade. Many components in solar modules can be recycled, and the current recycling methods mostly focus on purification and extraction of valuable elements. Although this method can effectively recycle waste, it often requires high-temperature heat treatment and corrosive liquids. It may cause secondary pollution to the environment, so it is necessary to develop an environmentally friendly recycling method. At present, the solar modules on the market are dominated by silicon, and silicon is regarded as a promising anode material for lithium-ion battery. Therefore, this research focuses on reusing solar cells of waste solar modules, which is different from the previous purification. Based on this concept, we select the wet ball milling method to prepare Si/SiOx/Al2O3 composite material, and further form a composite anode with a carbon paper substrate for lithium-ion battery. This experiment explores the influence of different ball milling time and different rotation speed on Si/SiOx/Al2O3, and the best parameters are defined. According to the results, the agglomeration is more serious and the oxidation degree is increased with increasing ball milling time or rotation speed. The composite electrode treated at 500 rpm for 2 hours exhibits discharge capacity of 1423 mAh/g with 74.5% capacity retention after 100 cycles at 200 mA/g. Even at 2000 mA/g, it still deliver discharge capacity of 866 mAh/g.
In addition, this work further study the influence of the modified carbon paper substrate on the electrochemical performance of composite anode. The analysis results show that the carbon paper containing nitrogen functional groups can further improve the electrochemical performance. After 100 cycles, the discharge capacity and capacity retention rate are increased to 1603 mAh/g and 90.6%, respectively. It indicates the nitrogen doping can increase the electrochemical stability and discharge capacity of the composite anode during cycling. Overall, this study demonstrates that waste solar cells can be transformed to Si/SiOx/Al2O3 composite materials directly through a simple and environmentally-friendly process. In addition, CF-based Si/SiOx/Al2O3 composite exhibits favorable performance in terms of cycling stability and rate capability.
關鍵字(中) ★ 廢棄太陽能電池
★ 碳纖維
★ 矽負極
★ 鋰離子電池
關鍵字(英) ★ Waste solar cells
★ Carbon fibers
★ Si-based anode
★ Lithium-ion battery
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 太陽能產業市場成長與回收 1
1-2 廢棄太陽能模組價值 4
1-3 研究動機 6
第二章 文獻回顧 7
2-1 鋰離子電池應用及發展 7
2-2 鋰離子電池工作原理及組成 9
2-3 鋰離子電池組成材料 11
2-3-1 正極材料(Cathode) 11
2-3-2 負極材料(Anode) 13
2-3-3 黏著劑(Binder) 15
2-3-4 電解質(Electrolyte) 16
2-3-5 隔離膜(Separator) 16
2-3-6 集電體(Current collector) 17
2-4 矽基負極材料 18
2-4-1 矽(Bulk silicon, Si) 18
2-4-2 二氧化矽(Silicon dioxide, SiO2) 22
2-4-3 低氧化矽(SiOx, 0≤X≤2) 24
2-5 矽-金屬氧化物複合材料 28
2-6 碳材集電體 30
2-7 官能基摻雜 34
第三章 實驗方法 38
3-1 實驗架構 38
3-2 複合電極與鈕扣型電池製備 40
3-2-1 實驗藥品與儀器 40
3-2-2 Si/SiOx/Al2O3活性物質製備 41
3-2-3 碳紙基材改質 41
3-2-4 Si/SiOx/Al2O3碳紙複合型負極製備 42
3-2-5 Si/SiOx/Al2O3傳統負極電極製備 42
3-2-6 鈕扣型電池製備 43
3-3 材料分析及電化學測量 45
3-3-1 感應耦合電漿放射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometer, ICP-OES) 45
3-3-2 X光繞射分析儀(X-ray Diffraction, XRD) 45
3-3-3 超高解析場發射掃描電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 46
3-3-4 高解析穿透式電子顯微鏡(Transmission Electron Microscopy, HRTEM) 46
3-3-5 雷射粒徑分析儀(Laser Particle Size Analyzer, PSA) 46
3-3-6 X射線光電子能譜分析(X-ray Photoelectron Spectroscopy, XPS) 46
3-3-7 拉曼光譜儀(Raman spectroscopy) 47
3-3-8 循環伏安法分析(Cyclic Voltammetry, CV) 47
3-3-9 連續循環充放電測試(Charge and Discharge Test) 47
3-3-10 交流阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 48
第四章 結果與討論 49
4-1 球磨時間效應-材料分析 49
4-1-1 ICP-OES分析 49
4-1-2 X光繞射分析 50
4-1-3 FE-SEM分析 52
4-1-4 雷射粒徑分析 56
4-1-5 XPS分析 58
4-2 球磨時間效應-電化學分析 60
4-2-1 循環伏安法分析 60
4-2-2 快速充放電測試 62
4-2-3 循環壽命測試 65
4-3 球磨速率效應-材料分析 67
4-3-1 X光繞射分析 67
4-3-2 FE-SEM分析 69
4-3-3 HRTEM分析 73
4-3-4 雷射粒徑分析 76
4-3-5 XPS分析 78
4-4 球磨速率效應-電化學分析 81
4-4-1 循環伏安法分析 81
4-4-2 快速充放電測試 83
4-4-3 循環壽命測試 86
4-5 基材改質-材料分析 90
4-5-1 FE-SEM分析 90
4-5-2 拉曼光譜儀分析 92
4-5-3 XPS分析 94
4-6 基材改質-電化學分析 100
4-6-1 循環伏安法分析 100
4-6-2 快速充放電測試 104
4-6-3 循環壽命測試 106
4-6-4 交流阻抗分析 108
第五章 結論與未來展望 111
5-1 結論 111
5-1-1 球磨時間及轉速的效應 111
5-1-2 基材改質 113
5-2 未來展望 114
參考文獻 115
附錄 122
參考文獻 [1] Annarita Paiano, "Photovoltaic waste assessment in Italy," Renewable and Sustainable Energy Reviews, vol. 41, pp. 99-112, 2015.
[2] Dorte Nørgaard Madsena, Jan Petter Hansena, "Outlook of solar energy in Europe based on economic growth characteristics," Renewable and Sustainable Energy Reviews, vol. 114, p. 109306, 2019.
[3] Ewa Płaczek-Popko, "Top PV market solar cells 2016," Opto-Electronics Review, vol. 25, pp. 55-64, 2017.
[4] Peter Majewski, Weam Al-shammari, Michael Dudley, Joytishna Jit, Sang-Heon Lee, Kim Myoung-Kug, Kim Sung-Jim, "Recycling of solar PV panels-product stewardship and regulatory approaches," Energy Policy, vol. 149, p. 112062, 2021.
[5] Weckend, Stephanie, Andreas Wade, Garvin A. Heath, "End of Life Management: Solar Photovoltaic Panels," National Renewable Energy Lab.(NREL), no. NREL/TP-6A20-73852, 2016.
[6] Rong Deng, Nathan L. Chang, Zi Ouyang, Chee Mun Chong, "A techno-economic review of silicon photovoltaic module recycling," Renewable and Sustainable Energy Reviews, vol. 109, pp. 532-550, 2019.
[7] Yan Xu, Jinhui Li, Quanyin Tan, Anesia Lauren Peters, Congren Yang, "Global status of recycling waste solar panels: A review," Waste Management, vol. 75, pp. 450-458, 2018.
[8] Md. Shahariar Chowdhury, Kazi Sajedur Rahman, Tanjia Chowdhury, Narissara Nuthammachot, Kuaanan Techato, Md. Akhtaruzzaman, Sieh Kiong Tiong, Kamaruzzaman Sopian, Nowshad Amin, "An overview of solar photovoltaic panels’ end-of-life material recycling," Energy Strategy Reviews, vol. 27, p. 100431, 2020.
[9] Wen-Hsi Huang, Meng Tao, "A simple green process to recycle Si from crystalline-Si solar cells," in 2015 IEEE 42nd Photovoltaic Specialist Conference, 2015.
[10] Jun-Kyu Leea, Jin-Seok Leea, Young-Soo Ahn, Gi-Hwan Kang, Hee-Eun Song, Jeong-In Lee, Min-Gu Kang, Churl-Hee Cho, "Photovoltaic performance of c-Si wafer reclaimed from end-of-life solar cell," Solar Energy Materials & Solar Cells, vol. 160, pp. 301-306, 2017.
[11] Byungjo Jung, Jongsung Park, Donghwan Seo, Nochang Park, "Sustainable System for Raw-Metal Recovery from Crystalline Silicon," ACS Sustainable Chemistry & Engineering, vol. 4, pp. 4079-4083, 2016.
[12] Wen-Hsi Huang, Woo Jung Shin, Laidong Wang, Wen-Cheng Sun, Meng Tao, "Strategy and technology to recycle wafer-silicon solar modules," Solar Energy, vol. 144, pp. 22-31, 2017.
[13] Pablo Dias, Selene Javimczik, Mariana Benevit, HugoVeit, "Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules," Waste Management, vol. 60, pp. 716-722, 2017.
[14] Arumugam Manthiram, "An Outlook on Lithium Ion Battery Technology," ACS Central Science, vol. 3, pp. 1063-1069, 2017.
[15] Zachary P. Cano, Dustin Banham, Siyu Ye, Andreas Hintennach, Jun Lu, Michael Fowler, Zhongwei Chen, "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy volume , vol. 3, pp. 279-289, 2018.
[16] Jeffrey W. Fergus , "Recent developments in cathode materials for lithium ion batteries," Journal of Power Sources, vol. 195, pp. 939-954, 2010.
[17] Xueqian Ji, Qing Xia, Yuxing Xu, Hailan Feng, Pengfei Wang, "A review on progress of lithium-rich manganese-based cathodes for lithium," Journal of Power Sources, vol. 487, p. 229362, 2021.
[18] Arumugam Manthiram, "A reflection on lithium-ion battery cathode chemistry," Nature Communications, vol. 11, p. 1550, 2020.
[19] Naoki Nitta, Feixiang Wu, Jung Tae Lee, Gleb Yushin, "Li-ion battery materials: present andfuture," Materials Today, vol. 18, pp. 252-264, 2015.
[20] Andrew Carnovale, Xianguo Li, "A modeling and experimental study of capacity fade for lithium-ion," Energy and AI, vol. 2, p. 100032, 2020.
[21] Tai Thai Vu, Gwang Hyeon Eom, Junwon Lee, Min-Sik Park, Janghyuk Moon, "Electrolyte interface design for regulating Li dendrite growth in," Journal of Power Sources, vol. 496, p. 229791, 2021.
[22] Xiaohui Shen, Zhanyuan Tiana, Ruijuan Fan, Le Shao, Dapeng Zhang, Guolin Cao, Liang Kou , Yangzhi Bai, "Research progress on silicon/carbon composite anode materials for lithium-ion battery," Journal of Energy Chemistry, vol. 27, pp. 1067-1090, 2018.
[23] Hui Cheng, Joseph G. Shapter, Yongying Li, Guo Gao, "Recent progress of advanced anode materials of lithium-ion batteries," Journal of Energy Chemistry, vol. 57, pp. 451-468, 2021.
[24] Ye Shi, Xingyi Zhou, Guihua Yu, "Material and Structural Design of Novel Binder Systems for HighEnergy, High-Power Lithium-Ion Batteries," Accounts of Chemical Research, vol. 50, pp. 2642-2652, 2017.
[25] Zouina Karkar, Dominique Guyomard, Lionel Rou, Bernard Lestriez, "A comparative study of polyacrylic acid (PAA) and carboxymethyl," Electrochimica Acta, vol. 258, pp. 453-466, 2017.
[26] Yun Zhao , Zheng Liang, Yuqiong Kang, Yunan Zhou, Yanxi Li, Xiangming He, Li Wang, Weicong Mai, Xianshu Wang, Guangmin Zhou, Junxiong Wang, Jiangang Li, Naser Tavajohi, Baohua Li, "Rational design of functional binder systems for high-energy lithium-based rechargeable batteries," Energy Storage Materials, vol. 35, pp. 353-377, 2021.
[27] Juyan Zhang, Xuhui Yao, Ravi K. Misra, Qiong Cai, Yunlong Zhao, "Progress in electrolytes for beyond-lithium-ion batteries," Journal of Materials Science & Technology, vol. 44, pp. 237-257, 2020.
[28] Qingsong Wang, Lihua Jiang, Yan Yua, Jinhua Suna, "Progress of enhancing the safety of lithium ion battery from the electrolyte aspect," Nano Energy, vol. 55, pp. 93-114, 2019.
[29] Pan Zhai, Kexin Liu, Zhuyi Wang, Liyi Shi, Shuai Yuan, "Multifunctional separators for high-performance lithium ion batteries," Journal of Power Sources, vol. 499, p. 229973, 2021.
[30] Salvatore Luiso, Peter Fedkiw, "Lithium-ion battery separators: Recent developments and state of art," Current Opinion in Electrochemistry, vol. 20, pp. 99-109, 2020.
[31] Wenchen Ren, Yinan Zheng, Zhihua Cui, Yinsong Tao, Benxia Li, Wentao Wang, "Recent progress of functional separators in dendrite inhibition for lithium metal batteries," Energy Storage Materials, vol. 35, pp. 157-168, 2021.
[32] Yunyun Zhai, Na Wang, Xue Mao, Yang Si, Jianyong Yu, Salem S. Al-Deyab, Mohamed El-Newehy, Bin Ding, "Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 14511-14518, 2014.
[33] Joey Chung-Yen Jung, Pang-Chieh Sui, Jiujun Zhang, "A review of recycling spent lithium-ion battery cathode materials using," Journal of Energy Storage, vol. 35, p. 102217, 2021.
[34] Pengcheng Zhu, Dominika Gastol, Jean Marshall, Roberto Sommerville, Vannessa Goodship, Emma Kendrick, "A review of current collectors for lithium-ion batteries," Journal of Power Sources, vol. 485, p. 229321, 2021.
[35] Junming Su, Jiayue Zhao, Liangyu Li, Congcong Zhang, Chunguang Chen, Tao Huang, Aishui Yu, "Three-Dimensional Porous Si and SiO2 with In Situ Decorated Carbon Nanotubes As Anode Materials for Li-ion Batteries," ACS Applied Materials & Interfaces, vol. 9, pp. 17807-17813, 2017.
[36] Tiefeng Liu, Qiaoling Chu, Cheng Yan, Shanqing Zhang, Zhan Lin, Jun Lu, "Interweaving 3D Network Binder for High-Areal-Capacity Si Anode through Combined Hard and Soft Polymers," Advanced Energy Materials, p. 1802645, 2018.
[37] Poonam Sehrawat, Abgeena Shabir, Abid, C.M. Julien, S.S. Islam, "Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries," Journal of Power Sources, vol. 501, p. 229709, 2021.
[38] Miaolun Jiao, Yangfeng Wang, Chenliang Ye, Chengyang Wang, Wenkui Zhang, Chu Liang, "High-capacity SiOx (0≦x≦2) as promising anode materials for nextgeneration lithium-ion batteries," Journal of Alloys and Compounds, vol. 842, p. 155774, 2020.
[39] Xiang Chen, Haixia Li, Zhenhua Yan, Fangyi Cheng, Jun Chen, "Structure design and mechanism analysis of silicon anode for lithium-ion batteries," SCIENCE CHINA Materials., vol. 62, p. 1515–1536, 2019.
[40] Wen-Feng Ren, Yao Zhou, Jun-Tao Li, Ling Huang, Shi-Gang Sun, "Si anode for next-generation lithium-ion battery," Current Opinion in Electrochemistry, vol. 18, pp. 46-54, 2019.
[41] Hua Zhang, Shuwu Liu, Xiaofang Yu , Shuiliang Chen, "Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive," Journal of Alloys and Compounds, vol. 822, p. 153664, 2020.
[42] Michal Osiak, Hugh Geaney, Eileen Armstronga, Colm O′Dwyer, "Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance," Journal of Materials Chemistry A, vol. 2, pp. 9433-9460, 2014.
[43] Sujong Chae, Minseong Ko, Kyungho Kim, Kihong Ahn, Jaephil Cho, "Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries," Joule, vol. 1, pp. 47-60, 2017.
[44] Hao Wu , Lihua Zheng, Jing Zhan, Ning Du , Wenjun Liu, Jie Ma, Liwei Su, Lianbang Wang, "Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes," Journal of Power Source, vol. 449, p. 227513, 2020.
[45] Zehao Zhang, Qiuzhi Huang, Wei Ma, Haibo Li, "Interfacial engineering of polyhedral carbon@hollowed carbon@SiO2 nanobox with tunable structure for enhanced lithium ion battery," Applied Surface Science, vol. 538, p. 148039, 2021.
[46] Zhenhui Liu, Doudou Guan, Qiang Yu, Lin Xu, Zechao Zhuang, Ting Zhu, Dongyuan Zhao, Liang Zhou, Liqiang Mai, "Monodisperse and Homogeneous SiOx/C Microspheres: A Promising High-Capacity and Durable Anode Material for Lithium-Ion Batteries," Energy Storage Materials, vol. 13, pp. 112-118, 2018.
[47] Sanjaya Brahma, Y.-P.Lin, S.-J.Tung, Chia-Chin Chang, Jow-Lay Huang, "Room temperature synthesis of SiOx/rGO composite as anode material in lithium ion battery," Materials Letters, vol. 299, p. 130043, 2021.
[48] Hamid Ghayour, Majid Abdellahi, Maryam Bahmanpour, "Optimization of the high energy ball-milling: Modeling and parametric study," Powder Technology, vol. 291, pp. 7-13, 2016.
[49] Shang-Chieh Hou, Yuh-Fan Su, Chia-Chin Chang, Chih-Wei Hu, Tsan-Yao Chen, Shun-Min Yang, Jow-Lay Huang, "The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery," Journal of Power Sources, vol. 349, pp. 111-120, 2017.
[50] Lingzhi Qian, Jin-Le Lan, Mengyao Xue, Yunhua Yu, Xiaoping Yang, "Two-step ball-milling synthesis of a Si/SiOx/C composite electrode for lithium ion batteries with excellent long-term cycling stability," RSC Advances, vol. 7, p. 36697, 2017.
[51] Jingjing Tang, Lin Hou, Tingjie Hu, Sicheng Fan, Xiangyang Zhou, Juan Yang, "Influence of oxygen content on the electrochemical behavior of SiOx@C anodes for Li-ion battery," Composites Communications, vol. 23, p. 100544, 2021.
[52] Dongniu Wang, Jinli Yang, Jian Liu, Xifei Li, Ruying Li, Mei Cai, Tsun-Kong Sham, Xueliang Sun, "Atomic layer deposited coatings to significantly stabilize anodes for Li ion batteries: effects of coating thickness and the size of anode particles," J. Mater. Chem. A, vol. 2, pp. 2306-2312, 2014.
[53] Poulomi Roy, Suneel Kumar Srivastava, "Nanostructured anode materials for lithium ion batteries," Journal of Materials Chemistry A, vol. 3, p. 2454–2484, 2015.
[54] Sang-Ok Kim, Arumugam Manthiram, "Low-cost carbon-coated Si-Cu3Si-Al2O3 nanocomposite anodes for high-performance lithium-ion batteries," Journal of Power Sources, vol. 332, pp. 222-229, 2016.
[55] Xiaohui Shen , Le Shao, Zhanyuan Tian, Zhaowen Hu, Guolin Cao, "Study on the Application of Carbon-coated Copper Foil as Negative Current Collector for Silicon-based Lithium-ion Batteries," International Journal of Electrochemical Science, vol. 15, pp. 9013-9023, 2020.
[56] Huachao Tao, Lingyun Xiong, Shouchao Zhu, Xuelin Yang, Lulu Zhang, "Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries," International Journal of Hydrogen Energy, vol. 41, pp. 21268-21277, 2016.
[57] Qin Si, Masaki Matsui, Tatsuo Horiba, Osamu Yamamoto, Yasuo Takeda, Norio Seki, Nobuyuki Imanishi, "Carbon paper substrate for silicon-carbon composite anodes in lithium-ion batteries," Journal of Power Sources, vol. 241, pp. 744-750, 2013.
[58] Yu-Gang Ma, Julin Wang, Xiaoping Cai, "The Effect of Electrolyte on Surface Composite and Microstructure of Carbon Fiber by Electrochemical Treatment," International Journal of Electrochemical Science, vol. 8, pp. 2806-2815, 2013.
[59] Mohit Sharma, Shanglin Gao, Edith Mäder, Himani Sharma, Leong Yew Wei, Jayashree Bijwe, "Carbon fiber surfaces and composite interphases," Composites Science and Technology, vol. 102, pp. 35-50, 2014.
[60] Mengjie Feng, Shubin Wang, Yalin Yu, Qihang Feng, Jiping Yang, Boming Zhang, "Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries," Applied Surface Science, vol. 392, pp. 27-35, 2017.
[61] Chieh-Tsung Lo, Keng-Wei Lin, Tzu-Pei Wang, Sheng-Min Huang, Chien-Liang Lee, "Differentiating between the effects of nitrogen plasma and hydrothermal treatment on electrospun carbon fib ers use d as supercapacitor electrodes," Electrochimica Acta, vol. 381, p. 138255, 2021.
[62] Alexandre Merlen, Josephus Gerardus Buijnsters, Cedric Pardanaud, "A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: from Graphene to Amorphous Carbons," Coatings, vol. 7, p. 153, 2017.
[63] Peter T. Kissinger, William R. Heineman, "Cyclic Voltammetry," Journal of Chemical Education, vol. 60, p. 772, 1983.
[64] Xianhua Hou, Miao Zhang, Jiyun Wanga, Shejun Hu, Xiang Liu, Zongping Shao, "High yield and low-cost ball milling synthesis of nano-flake Si@SiO2 with small crystalline grains and abundant grain boundaries as a superior anode for Li-ion batteries," Journal of Alloys and Compounds, vol. 639, pp. 27-35, 2015.
[65] Qin Si, Kazuma Hanai, Takayuki Ichikawa, Michael Brian Phillipps, Atsushi Hirano, Nobuyuki Imanishi, Osamu Yamamoto, Yasuo Takeda, "Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries," Journal of Power Sources, vol. 196, pp. 9774-9779, 2011.
[66] Dingsheng Wang, Mingxia Gao, Hongge Pan, Junhua Wang, Yongfeng Liu, "High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization," Journal of Power Sources, vol. 256, pp. 190-199, 2014.
[67] Hongjin Xue, Yingqiang Wu, Yeguo Zou, Yabin Shen, Gang Liu, Qian Li, Dongming Yin, Limin Wang, Jun Ming, "Unraveling Metal Oxide Role in Exfoliating Graphite: New Strategy to Construct High-Performance GrapheneModified SiOx-Based Anode for Lithium-Ion Batteries," Adv. Funct. Mater., p. 1910657, 2020.
[68] Shang-Chieh Hou, Yuh-Fan Su, Chia-Chin Chang, Chih-Wei Hu, Tsan-Yao Chen,Shun-Min Yang, Jow-Lay Huang, "The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery," Journal of Power Sources, vol. 349, pp. 111-120, 2017.
[69] Yue Ouyang, Xiaobo Zhu, Fei Li, Feili Lai, Yue Wu, Yue-E Miao, Tianxi Liu, "Silicon @ nitrogen-doped porous carbon fiber composite anodes synthesized by an in-situ reaction collection strategy for high-performance lithium-ion batteries," Applied Surface Science, vol. 475, pp. 211-218, 2019.
[70] Xuejun Bai, Biao Wang, Huaping Wang, Jianming Jiang, "In situ synthesis of carbon fiber-supported SiOx as anode materials for lithium ion batteries," RSC Adv., vol. 6, pp. 32798-32803, 2016.
[71] Junying Zhang, Chunqian Zhang, Zhi Liu, Jun Zheng, Yuhua Zuo, Chunlai Xue, Chuanbo Li, Buwen Cheng, "High-performance ball-milled SiOx anodes for lithium ion batteries," Journal of Power Sources, vol. 339, pp. 86-92, 2017.
[72] Xiaodi Wang, Xiuzhi Liu, Xiaoli Ren, Kaisheng Luo, Wenyang Xu, Qingxi Hou, Wei Liu, "From wood pulp fibers to tubular SiO2/C composite as anode for Li-ion battery: in-situ regulation of cellulose microfibrils by alkali solution," Industrial Crops & Products, vol. 158, p. 113022, 2020.
[73] Chaohui Ruan, Pengxi Li, Jing Xu, Yucheng Chen, Yibing Xie, "Activation of carbon fiber for enhancing electrochemical performance," Inorg. Chem. Front., vol. 6, p. 3583–3597, 2019.
[74] Meng Zhang, Muhammad Shoaib, Huilong Fei, Tao Wang, Jiang Zhong, Ling Fan, Lei Wang, Haiyan Luo, Shan Tan, Yaya Wang, Jian Zhu, Jiawen Hu, Bingan Lu, "Hierarchically Porous N-Doped Carbon Fibers as a Free-Standing Anode for High-Capacity Potassium-Based Dual-Ion Battery," Adv. Energy Mater., p. 1901663, 2019.
[75] Hua Zhang, Juntan Yang, Haoqing Hou, Shuiliang Chen, Haimin Yao, "Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries," Scientific Reports, vol. 7.1, pp. 1-9, 2017.
[76] Noemie Elgrishi, Kelley J. Rountree, Brian D. McCarthy, Eric S. Rountree, Thomas T. Eisenhart, Jillian L. Dempsey, "A Practical Beginner’s Guide to Cyclic Voltammetry," Journal of Chemical Education, vol. 95, pp. 197-206, 2018.
[77] Woosung Choi, Heon-Cheol Shin, Ji Man Kim, Jae-Young Choi, Won-Sub Yoon, "Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries," Journal of Electrochemical Science and Technology, vol. 11, pp. 1-13, 2020.
[78] Emanuel Peled, Svetlana Menkin, "Review—SEI: Past, Present and Future," Journal of The Electrochemical Society, vol. 164, pp. A1703-A1719, 2017.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2021-9-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明