博碩士論文 108324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.191.189.85
姓名 古孟凡(Meng-Fan Ku)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
(Three-Dimensional Networks Fabricated by Self-assembly of Block Copolymer/Dopamine Mixtures)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究報告了一種簡單的方法,製備出由聚(苯乙烯-b-環氧乙烷)(PS-b-PEO)和多巴胺(DA)混合物組成之三維(3-D)多尺度孔隙。將混合物(BCP/DA)分別溶於不同的共溶劑中,THF/水和DMF/水。隨後HCl的添加不僅增強了PEO和DA之間的電荷−偶極相互作用、抑制了DA在溶液中的氧化反應,還可以提高混合物之間的有效Flory−Huggins參數,並在DMF/水之共溶劑系統中誘導3-D多尺度孔隙凝膠的形成。此溶液−凝膠的相轉變需要遵循兩步驟反應。首先,PS-b-PEO在共溶劑中形成微胞。接著,通過添加HCl獲得斑點狀微胞。作為物理性的交聯點,斑點狀微胞會自發的形成凝膠。此凝膠具有疏水性通道組成的3-D孔洞結構。將溶液或凝膠乾燥時,THF/水之共溶劑中的低分子量兩親性微胞會經歷快速的微胞融合過程,形成洋蔥狀囊胞。相比之下,DMF/水之共溶劑系統中的3-D多尺度孔隙凝膠能支撐自身的孔洞結構。接著在氨氣環境下引發DA的氧化聚合反應。發現由混合物(BCP/PDA)所構成之3-D多尺度孔隙結構仍保持不變。儘管在當前的製程中,高溫碳化後之3-D多尺度孔隙結構會塌陷,但此種具有高比表面積之3-D多尺度孔隙模板仍是非常具有應用價值。
摘要(英) Abstract
Three-dimensional (3D) network templates show great potential and interest in the fabrication of electronic devices, electrocatalysis, and supercapacitors. The 3D-network templates provide favorable characteristics, such as high specific surface area, high mass, and diffusion transfer. In this work, we report a simple method to fabricate 3-D micelle networks through self-assembly of mixtures of polystyrene-block-poly(ethylene) (PS-b-PEO) and dopamine (DA) in solution. Mixtures are dissolved in two different co-solvents, THF/water, and DMF/water, respectively, followed by HCl addition HCl addition not only enhances charge−dipole interactions between PEO and DA but also prohibits the oxidation reaction of DA in solution. In addition, HCl can increase the effective Flory-Huggins parameter of PS-b-PEO for the mixtures and triggers formation of a gel-like structure in the DMF/water system. Two-steps are necessary to induce the sol−gel transition. First, low-molecular-weight (low-Mw) PS-b-PEO formed core-shell micelles in co-solvent. Second, deformed micelles were obtained by adding HCl. Patchy micelles were formed and acted as cross-linking points for gelling. The gel structure is a 3-D micellar network with hydrophobic channels. The network framework evolved from patchy micelles. Upon drying from THF/water co-solvent, micelles of low-Mw PS-b-PEO formed onion-like vesicles . In contrast, the 3-D gel structure could support the porous framework that had formed in DMF/water co-solvent. DA oxidative polymerization was induced by NH4OH vapor. It was found that 3-D porous structure of BCP/PDA mixtures remained unchanged after DA polymerization for the micelles in DMF/water. Nevertheless, 3-D porous networks could collapse after carbonization at a high temperature.
關鍵字(中) ★ 嵌段共聚物
★ 微胞
★ 共溶劑
★ 溶液
★ 凝膠
★ 相轉變
★ 多孔結構
關鍵字(英) ★ DIBLOCK−COPOLYMERS
★ MICELLES
★ CO-SOLVENT
★ PHASE−TRANSITION
★ SO
★ GEL
★ POROUS STRUCTURE
論文目次 中文摘要 II
Abstract III
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1前言 1
1.2溶液中之兩親性嵌段共聚物 5
1.2.1微胞的生成機制 5
1.2.2微胞的形貌 6
1.2.3共聚物/前驅物的共組裝混摻物微胞 8
1.3研究動機 9
第二章 實驗方法 10
2.1實驗藥品 10
2.2實驗樣品製備流程 12
2.2.1純嵌段共聚物之共溶劑系統 12
2.2.2嵌段共聚物/多巴胺混合物之共溶劑系統 13
2.2.3固體樣品之製備 13
2.3實驗儀器 15
2.3.1冷場發射掃描式電子顯微鏡(Cold Feld Electron Emission Scanning Electron Microscope, CFE-SEM) 15
2.3.2小角度X光散射(Small Angle X-ray Scattering, SAXS) 16
2.3.3穿透式X光顯微鏡(Transmission X-ray Microscopy, TXM) 17
2.4擬合軟體(SasView) 19
2.4.1 Guinier_Porod模型 19
2.4.2 Core_Shell_Sphere模型 20
2.4.3 Core_Shell_Cylinder模型 21
2.4.4 Schulz分佈 22
2.4.5 Sticky-Hard-Sphere, SSHS(q) 23
2.4.6 Hayter_MSA, SSC(q) 24
第三章 實驗結果與討論 25
3.1嵌段共聚物微胞在兩種共溶劑系統之自組裝行為 25
3.1.1中性溶液的共聚物隨機線圈 25
3.1.2兩親性的共聚物微胞 27
3.1.3純兩親性微胞的鹽酸效應 29
3.2嵌段共聚物微胞在DMF/水之共溶劑系統之分子量效應 33
3.2.1分子量效應下之微胞形態轉變 33
3.2.2分子量效應下之凝膠化過程 33
3.3嵌段共聚物/多巴胺混合物微胞在共溶劑系統之自組裝行為 36
3.3.1兩親性的共聚物/多巴胺混合物微胞 36
3.3.2在混合物微胞中導入鹽酸的關鍵作用 38
3.4乾燥之嵌段共聚物/多巴胺混合物(Solid state) 41
3.4.1乾燥過程中的微胞融合行為 41
3.4.2嵌段共聚物/聚多巴胺混合物及高溫碳化後之型態探討 44
總結 49
參考文獻 50
參考文獻 [1] M. C. Orilall, U. Wiesner. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells, Chem. Soc. Rev. 2011, 40, 520–535
[2] W. Li, J. Liu, D. Zhao. Mesoporous materials for energy conversion and storage devices, Nat. Rev. Mater. 2016, 1, 16023.
[3] J. Chmiola, G. Yushin, Y. Gogotsi. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science 2006, 313, 1760–1763.
[4] T. Ioroi, Z. Siroma, S. Yamazaki, K. Yasuda. Electrocatalysts for PEM Fuel Cells, Adv. Energy Mater. 2018, 1801284
[5] Y. Li, H. Dai. Recent advances in zinc–air batteries, Chem. Soc. Rev. 2014, 43, 5257−5275
[6] http://americanhistory.si.edu/fuelcells/basics.htm.
[7] D. Yu, E. Nagelli, F. Du, L. Dai. Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer, J. Phys. Chem. Lett. 2010, 1, 2165
[8] C. Sealy. The problem with platinum, Mater. Today 2008, 11, 65
[9] M. Winter, R. J. Brodd. What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev. 2004, 104, 4245
[10] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction, Science 2009, 323, 760
[11] R. Liu, S. M. Mahurin, C. Li, R. R. Unocic, S. Dai. Dopamine as a Carbon Source: The Controlled Synthesis of Hollow Carbon Spheres and Yolk-Structured Carbon Nanocomposites, Angew. Chem., Int. Ed. 2011, 50, 6799– 6802,
[12] Y. Liu, K. Ai, L. Lu. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields, Chem. Rev. 2014, 114, 9, 5057–5115
[13] K. Ai, Y. Liu, C. Ruan, L. Lu, G. Lu. Sp2 C-Dominant N-Doped Carbon Sub-micrometer Spheres with a Tunable Size: A Versatile Platform for Highly Efficient Oxygen-Reduction Catalysts, Adv. Mater. 2013, 25, 998
[14] J. Tang, J. Liu, C. Li, Y. Li, M. O. Tade, S. Dai, Y. Yamauchi. Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra-Large Pores through Assembly of Diblock Copolymer Micelles, Angew. Chem., Int. Ed. 2015, 54, 588–593,
[15] B. Jiang, C. Li, O. Dag, H. Abe, J. Henzie, Y. Yamauchi. Mesoporous metallic rhodium nanoparticles, Nat. Commun., 2017, 8, 15581
[16] L. Dai, Y. Xue, L. Qu, H. J. Choi, J. B. Baek, Metal-Free Catalysts for Oxygen Reduction Reaction, Chem. Rev. 2015, 115, 11, 4823−4892
[17] L. Dai. Functionalization of Graphene for Efficient Energy Conversion and Storage, Acc. Chem. Res. 2013, 46, 31
[18] http://butane.chem.uiuc.edu/cyerkes/chem102ae_fa08/homepage/Chem102AEFa07/Lecture_Notes_102/copy%20of%20Lecture%2012%20.htm.
[19] Y. Mai, A. Eisenberg. Self-assembly of block copolymers, Chem. Soc. Rev. 2012, 41, 5969−5985
[20] https://www.kruss-scientific.com/en/know-how/glossary/critical-micelle-concentration-cmc-and-surfactant-concentration
[21] J. Bang, S. Jain, Z. Li. T. P. Lodge, Sphere, Cylinder, and Vesicle Nanoaggregates in Poly(styrene-b-isoprene) Diblock Copolymer Solutions, Macromolecules 2006, 39, 4880−4888
[22] J. Yin, X. Yao. J. Y. Liou, W. Sun, Y. S. Sun, Y. Wang. Membranes with Highly Ordered Straight Nanopores by Selective Swelling of Fast Perpendicularly Aligned Block Copolymers, ACS Nano 2013, 7, 11, 9961−9974
[23] M. K. Corbierre, A. Eisenverg. Asymmetric amphiphilic block copolymers in solution: A morphological wonderland, Can. J. Chem. 1999, 77, 1311−1326
[24] D. E. Discher, A. Eisenberg. Polymer vesicles, Science 2002, 297, 967−973
[25] G. Battaglia, A. J. Ryan. Effect of Amphiphile Size on the Transformation from a Lyotropic Gel to a Vesicular Dispersion, Macromolecules 2006, 39, 798−805
[26] A. Fahmi, T. Pietsch, C. Mendoza, N. Cheval. Functional hybrid materials, Mater. Today 2009 12 44−50
[27] Y. Yu, L. Zhang, A. Eisenberg. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers, Macromolecules 1998, 31, 4, 1144−1154
[28] L. Zhang, K. Yu, A. Eisenberg. Ion-Induced Morphological Changes in “Crew-Cut” Aggregates of Amphiphilic Block Copolymers, Science 1996, 272, 1777−1779
[29] L. Zhang, A. Eisenberg. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions, Macromolecules 1996, 29, 8805−8815
[30] L. Zhang, A. Eisenberg. Multiple Morphologies and Characteristics of “Crew-Cut” Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions, J. Am. Chem. Soc. 1996, 118, 3168−3181
[31] L. R. Parent, E. Bakalis, A. R. Hernandez. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy, J. Am. Chem. Soc. 2017, 139, 47, 17140−17151
[32] X. Ye, Z. W. Li, Z. Y. Sun, B. Khomami. Template-Free Bottom-Up Method for Fabricating Diblock Copolymer Patchy Particles, ACS Nano 2016, 10, 5, 5199−5203
[33] S. Cui, L. Yu, J. Ding. Semi-bald Micelles and Corresponding Percolated Micelle Networks of Thermogels, Macromolecules 2018, 51, 16, 6405−6420
[34] H. Tian, Z. Lin, F. Xu, J. Zheng. Quantitative Control of Pore Size of Mesoporous Carbon Nanospheres through the Self-Assembly of Diblock Copolymer Micelles in Solution, Small 2016, 12, 3155−3163
[35] J. Tang, J. Liu, C. Li. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles, Angew. Chem., Int. Ed. 2015, 54, 588−593
[36] J. Liu, T. Yang. D. W. Wang, S. Z. Qiao. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres, Nat. Commun. 2013, 4, 2798
[37] https://huixueee.com/2019/09/10/%E7%A7%91%E7%A0%94/SEM%E5%9F%BA%E6%9C%AC%E5%8E%9F%E7%90%86/
[38] S. Skou, R. E. Gillilan, N. Ando. Synchrotron-based small-angle X-ray scattering of proteins in solution, Nat Protoc 2014, 9, 1727–1739
[39] Advanced Microscopy in Mycology, Fig. 5.1
[40] J. Y. Liou, Y. S. Sun. Monolayers of Diblock Copolymer Micelles by Spin-Coating from o-Xylene on SiOx/Si Studied in Real and Reciprocal Space, Macromolecules 2012, 45, 4, 1963−1971
[41] S. Förster, A. Timmann, M. Konrad, C. Schellbach, A. Meyer, S. S. Funari, P. Mulvaney, and R. Knott. Scattering Curves of Ordered Mesoscopic Materials, J. Phys. Chem. B 2005, 109, 4, 1347–1360
[42] https://www.sasview.org/docs/user/models/unified_power_Rg.html
[43] J. B. Guilbaud, A. Saiani. Using small angle scattering (SAS) to structurally characterise peptide and protein self-assembled materials, Chem. Soc. Rev. 2011,40, 1200−1210
[44] A Guinier and G Fournet, Small-Angle Scattering of X-Rays, John Wiley and Sons, New York, (1955)
[45] S. R. Kline. Reduction and analysis of SANS and USANS data using IGOR Pro, J Appl. Cryst., 39 (2006) 895
[46] S. V. G. Menon. A new interpretation of the sticky hard sphere model, J. Chem. Phys. 1991, 95, 12, 9186−9190
[47] F. Zhang, M. W.A. Skoda, R. M. J. Jacobs. Protein Interactions Studied by SAXS:  Effect of Ionic Strength and Protein Concentration for BSA in Aqueous Solutions, J. Phys. Chem. B 2007, 111, 251−259
[48] Y. Q. Yeh, H. P. Lin, C. Y. Tang, C. Y. Mou. Mesoporous silica SBA-15 sheet with perpendicular nanochannels, J. Colloid Interf. Sci. 2011 362, 354−366
[49] N. Lefevre, K. Ch. Daoulas, C. A. Fustin. Self-Assembly in Thin Films of Mixtures of Block Copolymers and Homopolymers Interacting by Hydrogen Bonds, Macromolecules 2010, 43, 18, 7734–7743
[50] S. H. Kim, M. J. Misner, L. Yang, T. P. Russell. Salt Complexation in Block Copolymer Thin Films, Macromolecules 2006, 39, 24, 8473–8479
[51] S. Yang, X. Yu, L. Wang, Y. F. Tu, J. X. Zheng, Stephen Z. D. Cheng. Hydrogen-Bonding-Driven Complexation of Polystyrene-block-poly(ethylene oxide) Micelles with Poly(acrylic acid), Macromolecules 2010, 43, 3018–3026
[52] B. Yang, C. Guo, S. Chen, J. Ma, J. Wang, X. F. Liang, Lily Zheng, H. Liu. Effect of Acid on the Aggregation of Poly(ethylene oxide)−Poly(propylene oxide)−Poly(ethylene oxide) Block Copolymers, J. Phys. Chem. B 2006 110 23068−23074
[53] G. Slor, N. Papo, U. Hananel, R. J. Amir. Tuning the molecular weight of polymeric amphiphiles as a tool to access micelles with a wide range of enzymatic degradation rates, Chem. Commun. 2018,54, 6875−6878
[54] Cindy M. Septani, Cheng-An, Wang, U-Ser Jeng, Yu-Chai, Bao-Tsan Ko, Ya-Sen Sun. Hierarchically Porous Carbon Materials from Self-Assembled Block Copolymer/Dopamine Mixtures, Langmuir 2020, 36, 11754−11764
[55] H. Shei, A. Eisenberg. Control of Architecture in Block-Copolymer Vesicles, Angew. Chem., Int. Ed. 2000, 39, 3310−3312
[56] H. Fan, X. Yu, Y. Liu, Z. Shi, H. Liu, Z. Nie, D. Wu, Z. Jin. Folic acid–polydopamine nanofibers show enhanced ordered-stacking via π–π interactions, Soft Matter 2015,11, 4621−4629
[57] B. W. Mansel, C. Y. Chen, J. M. Lin, Y. S. Huang, Y. C. Lin, H. L. Chen. Hierarchical Structure and Dynamics of a Polymer/Nanoparticle Hybrid Displaying Attractive Polymer–Particle Interaction, Macromolecules 2019, 52, 22, 8741−8750
[58] D. Saurel, J. Segalini, M. Jauregui, A. Pendashteh, B. Daffos, P. Simon, M. C. Cabanas. A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage, Energy Storage Mater 2019, 21 162−173
[59] A. Boyde, F. A. Mccorkell, G. K. Taylor. Iodine vapor staining for atomic number contrast in backscattered electron and X-ray imaging, Microsc. Res. Tech. 2014, 77, 1044−51
[60] P.J. Ferreira, G. J. la O, H. A. Gasteiger. Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells: A Mechanistic Investigation, J. Electrochem. Soc. 2005, 152 A2256
[61] H. Ham, N. H. Park, S. S. Kim, H. W. Kim. Evidence of Ostwald ripening during evolution of micro-scale solid carbon spheres, Sci. Rep. 2014, 4, 3579
[62] S. Sakerai, H. Nishino, D. N. Futaba, K. Hata. Role of Subsurface Diffusion and Ostwald Ripening in Catalyst Formation for Single-Walled Carbon Nanotube Forest Growth, J. Am. Chem. Soc. 2012, 134, 4, 2148–2153
[63] H. Yue, V. Reguero, E. Senokos, J. J. Vilatela. Fractal carbon nanotube fibers with mesoporous crystalline structure, Carbon 2017, 122, 47−53
[64] Complexity in Biological and Physical Systems-Bifurcations, Solitons and Fractals: IntechOpen (2017)
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2021-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明