博碩士論文 108324063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.221.139.146
姓名 陳秉旭(Bing-Xu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討鋯金屬有機框架中結構的缺陷程度對於混合基質薄膜之表現的影響
(Influences of Defect Degree in Zirconium Metal-Organic Framework on Mixed Matrix Membrane Performance)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 數十年來,由於氣體存儲與選擇性分離等領域發展有眾多種應用,
用於當作吸附劑的多孔材料的合成和表徵一直是一個活躍的研究領
域。但是,如果需要在當今工業中進行分離,則混合基質膜(Mixed
Matrix Membranes)是一個不錯的選擇,因為它大大降低了生產成本,
並提高薄膜的分離效率。
這項研究提出了使用UiO-66 此有機金屬框架(Metal-Organic
Framework)作為填充劑分散在PBI 和Pebax® 2533 中製備MMMs。通
過這兩種不同高分子聚合物觀察UiO-66 中缺陷的影響是否不同。而
UiO-66 是一種多孔材料,但易於形成缺陷,可以通過調節合成溫度
來控制結構中的缺陷。我們使用兩種合成溫度分別是25°C和130°C,
從而導致不同程度的缺陷存在於其結構中。然後表徵含有不同缺陷數
量之UiO-66 的MMMs,並測量氣體輸送性能以了解UiO-66 中的缺
陷對N2 和CO2 滲透性的影響。
此次研究發現當UiO-66 結構中所含有的缺陷程度越高,在與PBI
和Pebax 各別製備成MMMs 後薄膜性能都有著明顯之提升,其中
Pebax 系列的MMMs 提升最明顯。
摘要(英) The synthesis and characterization of porous materials as adsorbents has been an active field of research for decades, because of multitudinous applications gas storage to selective separations. However, if it is necessary to perform separations in today’s industry, mixed matrix membranes (MMMs) are a good choice. Therefore, we prepare MMM through porous materials and polymers to prepare high-performance membrane at a lower cost.
This research presents the results of using UiO-66 as filler dispersed in PBI and Pebax® 2533. Through these two kinds of polymers to observe whether the effects of defects in UiO-66 are different. UiO-66 is a porous material that is prone to form defects, so we use two synthetic temperatures (25 °C and 130 °C). Resulting in varying degree of defect presence. MMMs are characterized, and gas transport properties are measured to investigate the influence of defects in UiO-66 on the permeability of N2 and CO2.
This work finds that the degree of defects contained in the UiO-66 structure is higher, it is added to two kinds of polymers to prepare MMMs. The performance of membrane is significantly improved. Among them, the MMMs of Pebax series improve the most.
關鍵字(中) ★ 氣體分離
★ 混合基質薄膜
★ 有機金屬框架
★ 缺陷工程
關鍵字(英) ★ Gas separation
★ Mixed Matrix Membranes
★ Metal-Organic Frameworks
★ Defect engineering
論文目次 摘要.......i
Abstract.......ii
Acknowledgement......iii
Table of Contents......iv
List of Figures......vi
List of Tables......ix
Chapter 1 Background......1
1-1 Introduction......1
1-2 Literature Review......6
1-2-1 Defect engineering......6
1-2-2 Influences of polymer......11
1-3 Motivation......13
Chapter 2 Experimental......14
2-1 Materials and Reagents......14
2-2 Analysis Instruments and Characterization......14
2-2-1 X-ray diffraction (XRD)......14
2-2-2 Specific surface area and porosimetry analyze (BET)......15
2-2-3 Thermogravimetric analysis (TGA)......16
2-2-4 Scanning electron microscopy (SEM)......17
2-2-5 Energy-dispersive X-ray spectroscopy (EDS)......18
2-2-6 Fourier-transform infrared spectroscopy (FTIR)......18
2-2-7 Single gas permeation measurement......19
2-3 Instruments Used......21
2-4 Synthesis of UiO-66 with Different Degrees of Defect......22
2-5 Synthesis of Membranes......23
2-5-1 Pure PBI membrane and MMMs......23
2-5-2 Pure Pebax membrane and MMMs......25
Chapter 3 Results and Discussion......27
3-1 Characterization for UiO-66 Powder 27
3-1-1 X-ray diffraction of UiO-66_25 °C & 130 °C......27
3-1-2 N2 sorption and surface area of UiO-66_25 °C & 130 °C......28
3-1-3 Pore size distribution of UiO-66_25 °C & 130 °C......30
3-1-4 Thermogravimetric analysis of UiO-66_25 °C & 130 °C......32
3-1-5 FTIR spectrum of UiO-66_25 °C & 130 °C......35
3-1-6 Morphology of UiO-66_25 °C & 130 °C particles......37
3-2 Characterization for Membranes......38
3-2-1 X-ray diffraction of pure membranes & MMMs......38
3-2-2 Thermogravimetric analysis of pure membranes & MMMs......42
3-2-3 FTIR spectrum of pure membranes & MMMs......45
3-2-4 Morphology of pure membranes & MMMs......49
3-3 Gas Permeation Measurements......55
Chapter 4 Conclusions......60
Chapter 5 Future Work......61
References......62
參考文獻 1. Weart, S.R., The discovery of global warming. 2008: Harvard University Press.
2. Norby, R.J. and Y. Luo, Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi‐factor world. New phytologist, 2004. 162(2): p. 281-293.
3. Jasuja, H. and K.S. Walton, Experimental study of CO2, CH4, and water vapor adsorption on a dimethyl-functionalized UiO-66 framework. The Journal of Physical Chemistry C, 2013. 117(14): p. 7062-7068.
4. Lin, R., B. Villacorta Hernandez, L. Ge and Z. Zhu, Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018. 6(2): p. 293-312.
5. Goh, P., A. Ismail, S. Sanip, B. Ng and M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology, 2011. 81(3): p. 243-264.
6. Koros, W.J., Evolving beyond the thermal age of separation processes: Membranes can lead the way. AIChE Journal, 2004. 50(10): p. 2326-2334.
7. Robeson, L.M., The upper bound revisited. Journal of Membrane Science, 2008. 320(1-2): p. 390-400.
8. Yaghi, O.M., G. Li and H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature, 1995. 378(6558): p. 703-706.
9. Kirchon, A., L. Feng, H.F. Drake, E.A. Joseph and H.C. Zhou, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chem Soc Rev, 2018. 47(23): p. 8611-8638.
10. Moghadam, P.Z., A. Li, S.B. Wiggin, A. Tao, A.G.P. Maloney, P.A. Wood, S.C. Ward, and D. Fairen-Jimenez, Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials, 2017. 29(7): p. 2618-2625.
11. Cavka, J.H., S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
12. Cmarik, G.E., M. Kim, S.M. Cohen and K.S. Walton, Tuning the adsorption properties of UiO-66 via ligand functionalization. Langmuir, 2012. 28(44): p. 15606-13.
13. Feng, Y., Q. Chen, M. Jiang and J. Yao, Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Industrial & Engineering Chemistry Research, 2019. 58(38): p. 17646-17659.
14. Biswas, S., J. Zhang, Z. Li, Y.Y. Liu, M. Grzywa, L. Sun, D. Volkmer, and P. Van Der Voort, Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. Dalton Trans, 2013. 42(13): p. 4730-7.
15. Omidvar, M., H. Nguyen, H. Liang, C.M. Doherty, A.J. Hill, C.M. Stafford, X. Feng, M.T. Swihart, and H. Lin, Unexpectedly Strong Size-Sieving Ability in Carbonized Polybenzimidazole for Membrane H2/CO2 Separation. ACS Appl Mater Interfaces, 2019. 11(50): p. 47365-47372.
16. Clarizia, G., P. Bernardo, G. Gorrasi, D. Zampino and S.C. Carroccio, Influence of the Preparation Method and Photo-Oxidation Treatment on the Thermal and Gas Transport Properties of Dense Films Based on a Poly(ether-block-amide) Copolymer. Materials (Basel), 2018. 11(8).
17. Zhu, T., X. Yang, Y. Zheng, X. He, F. Chen and J. Luo, Preparation of poly (ether-block-amide)/poly (amide-co-poly (propylene glycol)) random copolymer blend membranes for CO2/N2 separation. Polymer Engineering & Science, 2019. 59(S1): p. E14-E23.
18. Ren, J., M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, and W. Pang, Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coordination Chemistry Reviews, 2017. 349: p. 169-197.
19. Furukawa, H., U. Muller and O.M. Yaghi, "Heterogeneity within order" in metal-organic frameworks. Angew Chem Int Ed Engl, 2015. 54(11): p. 3417-30.
20. Mittemeijer, E.J., The Crystal Imperfection; Lattice Defects, in Fundamentals of Materials Science: The Microstructure–Property Relationship Using Metals as Model Systems. 2011, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 201-244.
21. Wang, J., L. Liu, C. Chen, X. Dong, Q. Wang, L. Alfilfil, M.R. AlAlouni, K. Yao, J. Huang, D. Zhang, and Y. Han, Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. Journal of Materials Chemistry A, 2020. 8(8): p. 4464-4472.
22. Wu, H., Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, and W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc, 2013. 135(28): p. 10525-32.
23. DeStefano, M.R., Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chemistry of Materials, 2017.
24. Anjum, M.W., F. Vermoortele, A.L. Khan, B. Bueken, D.E. De Vos and I.F. Vankelecom, Modulated UiO-66-Based Mixed-Matrix Membranes for CO2 Separation. ACS Appl Mater Interfaces, 2015. 7(45): p. 25193-201.
25. Hu, Z., Y. Peng, Z. Kang, Y. Qian and D. Zhao, A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorg Chem, 2015. 54(10): p. 4862-8.
26. Bueken, B., N. Van Velthoven, A. Krajnc, S. Smolders, F. Taulelle, C. Mellot-Draznieks, G. Mali, T.D. Bennett, and D. De Vos, Tackling the Defect Conundrum in UiO-66: A Mixed-Linker Approach to Engineering Missing Linker Defects. Chemistry of Materials, 2017. 29(24): p. 10478-10486.
27. Nguyen, H.G.T., L. Mao, A.W. Peters, C.O. Audu, Z.J. Brown, O.K. Farha, J.T. Hupp, and S.T. Nguyen, Comparative study of titanium-functionalized UiO-66: support effect on the oxidation of cyclohexene using hydrogen peroxide. Catalysis Science & Technology, 2015. 5(9): p. 4444-4451.
28. Shearer, G.C., S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, and K.P. Lillerud, Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials, 2014. 26(14): p. 4068-4071.
29. Katayama, Y., K.C. Bentz and S.M. Cohen, Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS Appl Mater Interfaces, 2019. 11(13): p. 13029-13037.
30. Duan, P., J.C. Moreton, S.R. Tavares, R. Semino, G. Maurin, S.M. Cohen, and K. Schmidt-Rohr, Polymer Infiltration into Metal-Organic Frameworks in Mixed-Matrix Membranes Detected in Situ by NMR. J Am Chem Soc, 2019. 141(18): p. 7589-7595.
31. Fang, M., C. Montoro and M. Semsarilar, Metal and Covalent Organic Frameworks for Membrane Applications. Membranes (Basel), 2020. 10(5).
32. Vo, T.K., V.C. Nguyen, D.T. Quang, B.J. Park and J. Kim, Formation of structural defects within UiO-66 (Zr)-(OH) 2 framework for enhanced CO2 adsorption using a microwave-assisted continuous-flow tubular reactor. Microporous and Mesoporous Materials, 2021. 312: p. 110746.
33. Neeli, C.K.P., P. Puthiaraj, Y.-R. Lee, Y.-M. Chung, S.-H. Baeck and W.-S. Ahn, Transfer hydrogenation of nitrobenzene to aniline in water using Pd nanoparticles immobilized on amine-functionalized UiO-66. Catalysis Today, 2018. 303: p. 227-234.
34. Qiu, M., T. Guo, R. Xi, D. Li and X. Qi, Highly efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol using UiO-66 without metal catalysts. Applied Catalysis A: General, 2020. 602: p. 117719.
35. Song, Q., S. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, and S.A. Al-Muhtaseb, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 2012. 5(8): p. 8359-8369.
36. Zhang, X., T. Zhang, Y. Wang, J. Li, C. Liu, N. Li, and J. Liao, Mixed-matrix membranes based on Zn/Ni-ZIF-8-PEBA for high performance CO2 separation. Journal of Membrane Science, 2018. 560: p. 38-46.
37. Nafisi, V. and M.-B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014. 459: p. 244-255.
38. Azizi, N., H.R. Mahdavi, M. Isanejad and T. Mohammadi, Effects of low and high molecular mass PEG incorporation into different types of poly(ether-b-amide) copolymers on the permeation properties of CO2 and CH4. Journal of Polymer Research, 2017. 24(9).
39. Clark, C.A., K.N. Heck, C.D. Powell and M.S. Wong, Highly Defective UiO-66 Materials for the Adsorptive Removal of Perfluorooctanesulfonate. ACS Sustainable Chemistry & Engineering, 2019. 7(7): p. 6619-6628.
40. SING, K.S.W., Reporting physisorption data for gas/solid systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 1984.
41. Mohanty, M.M. and B.K. Pal, Sorption behavior of coal for implication in coal bed methane an overview. International Journal of Mining Science and Technology, 2017. 27(2): p. 307-314.
42. Liang, W., C.J. Coghlan, F. Ragon, M. Rubio-Martinez, D.M. D′Alessandro and R. Babarao, Defect engineering of UiO-66 for CO2 and H2O uptake - a combined experimental and simulation study. Dalton Trans, 2016. 45(11): p. 4496-500.
43. Slater, B., Z. Wang, S. Jiang, M.R. Hill and B.P. Ladewig, Missing Linker Defects in a Homochiral Metal-Organic Framework: Tuning the Chiral Separation Capacity. J Am Chem Soc, 2017. 139(50): p. 18322-18327.
44. Liang, X., K. Cai, F. Zhang, J. Liu and G. Zhu, A proton-conductive lanthanide oxalatophosphonate framework featuring unique chemical stability: stabilities of bulk phase and surface structure. Journal of Materials Chemistry A, 2017. 5(48): p. 25350-25358.
45. Shearer, G.C., S. Chavan, S. Bordiga, S. Svelle, U. Olsbye and K.P. Lillerud, Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials, 2016. 28(11): p. 3749-3761.
46. Lillerud, K.P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. ACS Appl Mater Interfaces, 2008.
47. Chin, H.Y., Adsorption of carbon dioxide in defective zirconium-based metal-organic frameworks. 國立中央大學碩士論文, 2018.
48. Song, J.Y., I. Ahmed, P.W. Seo and S.H. Jhung, UiO-66-Type Metal-Organic Framework with Free Carboxylic Acid: Versatile Adsorbents via H-bond for Both Aqueous and Nonaqueous Phases. ACS Appl Mater Interfaces, 2016. 8(40): p. 27394-27402.
49. Atzori, C., G.C. Shearer, L. Maschio, B. Civalleri, F. Bonino, C. Lamberti, S. Svelle, K.P. Lillerud, and S. Bordiga, Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. The Journal of Physical Chemistry C, 2017. 121(17): p. 9312-9324.
50. Li, B., W. Wu, T. Zhang, S. Jiang, X. Chen, G. Zhang, and X. Zhang, Ferrocene particles incorporated into Zr-based metal–organic frameworks for selective phenol hydroxylation to dihydroxybenzenes. RSC Advances, 2017. 7(61): p. 38691-38698.
51. Xu, H.-Q., S. Yang, X. Ma, J. Huang and H.-L. Jiang, Unveiling Charge-Separation Dynamics in CdS/Metal–Organic Framework Composites for Enhanced Photocatalysis. ACS Catalysis, 2018. 8(12): p. 11615-11621.
52. Hou, H., G. Sun, R. He, Z. Wu and B. Sun, Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. Journal of Power Sources, 2008. 182(1): p. 95-99.
53. P. Staiti, M.M., Infuence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes. Journal of Power Sources, 2001.
54. Azizi, N., M.R. Hojjati and M.M. Zarei, Study of CO2 and CH4 Permeation Properties through Prepared and Characterized Blended Pebax-2533 / PEG-200 Membranes. Silicon, 2017. 10(4): p. 1461-1467.
55. Yang, T., Y. Xiao and T.-S. Chung, Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011. 4(10): p. 4171.
56. Ren, L., M. Wang, S. Lu, L. Pan, Z. Xiong, Z. Zhang, Q. Peng, Y. Li, and J. Yu, Tailoring Thermal Transport Properties of Graphene Paper by Structural Engineering. Sci Rep, 2019. 9(1): p. 4549.
57. Hu, Z., Z. Kang, Y. Qian, Y. Peng, X. Wang, C. Chi, and D. Zhao, Mixed Matrix Membranes Containing UiO-66(Hf)-(OH)2 Metal–Organic Framework Nanoparticles for Efficient H2/CO2 Separation. Industrial & Engineering Chemistry Research, 2016. 55(29): p. 7933-7940.
58. Ehsani, A. and M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax ® 2533 mixed matrix membranes. Journal of the Taiwan Institute of Chemical Engineers, 2016. 66: p. 414-423.
59. Pinar, F.J., P. Cañizares, M.A. Rodrigo, D. Ubeda and J. Lobato, Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount. RSC Adv., 2012. 2(4): p. 1547-1556.
60. Abeykoon, N.C., V. Garcia, R.A. Jayawickramage, W. Perera, J. Cure, Y.J. Chabal, K.J. Balkus, and J.P. Ferraris, Novel binder-free electrode materials for supercapacitors utilizing high surface area carbon nanofibers derived from immiscible polymer blends of PBI/6FDA-DAM:DABA. RSC Advances, 2017. 7(34): p. 20947-20959.
61. Rewar, A.S., H.D. Chaudhari, R. Illathvalappil, K. Sreekumar and U.K. Kharul, New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties. Journal of Materials Chemistry A, 2014. 2(35): p. 14449.
62. Dinari, M., A. Nabiyan, A.A. Ensafi and M. Jafari-Asl, Polybenzimidazole and polybenzimidazole/MoS2hybrids as an active nitrogen sites: hydrogen generation application. RSC Advances, 2015. 5(122): p. 100996-101005.
63. Knozowska, K., G. Li, W. Kujawski and J. Kujawa, Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. Journal of Membrane Science, 2020. 599: p. 117814.
64. Hu, Z., S. Faucher, Y. Zhuo, Y. Sun, S. Wang and D. Zhao, Combination of Optimization and Metalated-Ligand Exchange: An Effective Approach to Functionalize UiO-66(Zr) MOFs for CO2 Separation. Chemistry, 2015. 21(48): p. 17246-55.
65. Biswas, S. and P. Van Der Voort, A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2Adsorption Properties. European Journal of Inorganic Chemistry, 2013. 2013(12): p. 2154-2160.
66. Yang, Q., A.D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P.L. Llewellyn, and G. Maurin, Understanding the Thermodynamic and Kinetic Behavior of the CO2/CH4 Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach. The Journal of Physical Chemistry C, 2011. 115(28): p. 13768-13774.
指導教授 張博凱(Bor Kae Chang) 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明