博碩士論文 108324070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.224.95.38
姓名 涂鈞皓(TU,JYUN-HAO)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究的目的主要在解析紫外光開/關照射刺激時聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸薄膜導電度響應原因,並且以微結構的角度量化分析造成此開/關效應以及響應率的結果,以期望製備具多功能性的紫外光感測器。為了提升聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光感測器的訊號靈敏性,我們添加不同種類的摻雜劑(甲苯、二甲基亞碸、鋰鹽、PEG)於PEDOT:PSS薄膜中,並量測在紫外光交替開/關照射下其導電度的變化,也發現各系統有不同的導電度響應率且摻雜高濃度的二甲基亞碸(1 vol%、5 vol%、10 vol%)、鋰鹽(50 wt%)、PEG (30 wt%、50 wt%)會失去開/關響應性質。爾後,我們以拉曼光譜得知聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸薄膜導電度變化的原因源自於benzoid/quinoid結構間的轉換,同時了解到導電度響應率取決於亞穩態benzoid 構象含量的多寡,越多亞穩態的benzoid構象其導電度響應率越高。我們也利用聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸製備出一個對紫外光具有刺激響應性質、可偵測濕度以及具防偽功能的多功能光晶感測器。
摘要(英) The purpose of this study is to probe the reason of ultraviolet stimulation and response of conductivity for poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) thin films under ultraviolet on/off switching. The results of the UV on/off effect and responsivity are quantitatively analyzed from the perspective of microstructure, in order to prepare a multifunctional ultraviolet light sensor. To improve the signal sensitivity of the PEDOT:PSS UV sensor, we added different kinds of dopants(toluene, dimethyl sulfoxide, lithium salt, PEG) to the PEDOT:PSS thin film, and measure the change of its conductivity under the alternating on/off irradiation of UV light. We found that each dopping system has a different conductivity response rates, but lose the on/off response properties at high concentrations of dimethyl sulfoxide (1 vol%, 5 vol%, 10 vol%), lithium salt (50 wt%), PEG (30 wt%, 50 wt%). From results of Raman spectroscopy, the conductivity of PEDOT:PSS film changes can be attributed to the conversion between benzoid and quinoid confromations. We also understand that the different conductivity response rate by UV stimulation depends on the content of the metastable benzoid conformation of PEDOT crystals. The more metastable benzoid conformations within PEDOT crystals have the higher responsivity of conductivity. We also use PEDOT:PSS to prepare a multifunctional photonc crystal detector that has stimulus response properties to ultraviolet light, can detect humidity, and has anti-counterfeiting functions.
關鍵字(中) ★ 紫外光照-導電度刺激響應 關鍵字(英) ★ UV on/off effect
論文目次 中文摘要 II
Abstract III
誌謝 IV
目錄 V
圖目錄 VIII
第一章 序論 1
第二章 簡介 3
2.1導電高分子 3
2.1.1導電高分子發展歷程 3
2.2導電高分子PEDOT:PSS 6
2.2.1 PEDOT:PSS的發展過程 6
2.2.2 PEDOT:PSS的化學結構 8
2.2.3提升PEDOT:PSS導電度之方法 9
2.2.4載子遷移率與載子濃度對PEDOT:PSS導電度的影響 12
2.2.5 PEDOT:PSS之相關應用 16
2.3研究動機 19
第三章 實驗 20
3.1實驗藥品及儀器 20
3.1.1 PEDOT:PSS薄膜製備藥品 20
3.1.2實驗儀器 21
3.2 實驗製備 22
3.2.1 PEDOT:PSS薄膜製備 22
3.2.2多功能性光晶感測器薄膜製備 22
3.3實驗儀器 23
3.3.1四點探針量測薄膜系統 23
3.3.2低掠角廣角度X-ray散射(GIWAXS) 24
3.3.3小角度X-ray散射(SAXS) 26
3.3.4擬合軟體(SasView) 27
3.3.5拉曼光譜學(Raman Spectroscopy) 28
第四章 結果與討論 30
4.1紫外光照刺激-導電度響應特性 30
4.1.1溶劑摻雜效應 31
4.1.2鋰鹽摻雜效應 36
4.1.3 PEG摻雜效應 38
4.1.4小結 39
4.2溶劑摻雜效應對PEDOT:PSS薄膜紫外光照導電度刺激響應的影響 40
4.2.1紫外光照誘發PEDOT分子構象轉變 40
4.2.2溶劑摻雜對benzoid/quinoid構象轉變之影響 41
4.2.3溶劑摻雜效應對PEDOT:PSS薄膜結晶結構之影響 48
4.2.4小結 51
4.3鋰鹽摻雜效應對PEDOT:PSS薄膜紫外光照導電度刺激響應的影響 52
小結 58
4.4 PEG摻雜效應對PEDOT:PSS薄膜紫外光照導電度刺激響應的影響 59
4.4.1 PEG摻雜對benzoid/quinoid構象轉變之影響 59
4.4.2 PEG摻雜效應對PEDOT:PSS薄膜結晶結構之影響 63
4.4.3小結 66
4.5多功能型光晶感測器 67
結論 73
參考文獻 74
參考文獻 [1] Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou and Z.-G. Chen, Adv. Mater., 2019, 31, 1807916.
[2] A. J. Heeger, Angew. Chem. Int. Ed., 2001, 40, 2591.
[3] L. V. Kayser and D. J. Lipomi, Adv. Mater., 2018, 31, 1806133.
[4] F.-C. Tang, J. Chang, F.-C. Wu, H.-L. Cheng, S. L.-C. Hsu, J.-S. Chen and W.-Y. Chou, J. Mater. Chem., 2012, 22, 22409.
[5] M. N. Gueye, A. Carellaa, J. Faure-Vincentc, R. Demadrillec and J.-P. Simonatoa, Prog. Mater. Sci., 2020, 108, 100616.
[6] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik and J. R. Reynolds, Adv. Mater., 2000, 12, 481.
[7] F. Jonas and L. Schrader, Synth. Met, 1991, 41, 831.
[8] T. Horii, Y. Li, Y. Mori and H. Okuzaki, Polym. J., 2015, 47, 695.
[9] M. Culebras, C. M. Gómez and A. Cantarero, J. Mater. Chem. A., 2014, 2, 10109.
[10] A. G. MacDiarmida and A. J. Epstein, Synth. Met, 1994, 65, 103.
[11] D. Bagchi and R. Menon, Chem. Phys. Lett., 2006, 425, 114.
[12] X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang, Y. Cheng, R.Wen, L. Ma, F. Yan, and Y. Xia, Adv. Sci., 2019, 6, 1900813.
[13] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp and K. Leo, Adv. Funct. Mater., 2011, 21, 1076.
[14] C. M. Palumbiny, F. Liu, T. P. Russell, A. Hexemer, C. Wang and P. Müller-Buschbaum, Adv. Mater., 2015, 27, 3391.
[15] Q. Wei, M. Mukaida, Y. Naitoh and T. Ishida, Adv. Mater., 2013, 25, 2831.
[16] J. Dong and G. Portale, Adv. Mater. Interfaces, 2020, 7, 2000641.
[17] N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y.-R. Jo, B.-J. Kim and K. Lee, Adv. Mater., 2014, 26, 2268.
[18] Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann and Z. Bao, Sci. Adv., 2017, 3, 1602076.
[19] E. Hosseini, V. O. Kollath and K. Karan, J. Mater. Chem. C, 2020, 8, 3982.
[20] R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith, M. F. Toney and A. Salleo, Nat. Mater., 2013, 12, 1038.
[21] J. Rivnay, S. Inal, B. A. Collins, M. Sessolo, E. Stavrinidou, X. Strakosas, C. Tassone, D. M. Delongchamp and G. G. Malliaras, Nat. Commun., 2016, 7, 1.
[22] N. Massonnet, A. Carella, O. Jaudouin, P. Rannou, G. Laval, C. Celle and J.-P. Simonato, J. Mater. Chem. C, 2014, 2, 1278.
[23] D. Alemu, H.-Y. Wei, K.-C. Ho and C.-W. Chu, Energy Environ. Sci., 2012, 5, 9662.
[24] N Sakai, G. K. Prasad, Y. Ebina, K. Takada and T. Sasaki, Chem. Mater., 2006, 18, 3596.
[25] S. Dhar, T. Majumder and S. P. Mondal, ACS Appl. Mater. Interfaces, 2016, 8, 31822.
[26] S. Li, Z. Yan, Z Liu, J. Chen, Y. Zhi, D. Guo, P. Li, Z. Wu and W. Tang, J. Mater. Chem. C, 2020, 8, 1292.
[27] J. P. Thomas, S. Srivastava, L. Zhao, M. Abd-Ellah, D. McGillivray, J. S. Kang, M. A. Rahman, N. Moghimi, N. F. Heinig and K. T. Leung, ACS Appl. Mater. Interfaces, 2015, 7, 7466.
[28] S. Stathopoulos, I. Tzouvadaki and T. Prodromakis, Sci. Rep., 2020, 10, 1.
[29] X. Li, Z. Liu, Z. Zhou, H. Gao, G. Liang, D. Rauber, C. W. M. Kay and P. Zhang, 2020, 3, 98.
[30] D. A. Mengistie, P.-C. Wangc and C.-W. Chu, J. Mater. Chem. A, 2013, 1, 9907.
[31] J. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu and Y. Yang, Adv. Funct. Mater., 2005, 15, 203.
[32] S. Mahato, J. Puigdollers, C. Voz, M. Mukhopadhyay, M. Mukherjee and S. Hazra, Appl. Surf. Sci., 2020, 499, 143967.
[33] L. Ouyang, C. Musumeci, M. J. Jafari, T. Ederth and O. Inganäs, ACS Appl. Mater. Interfaces, 2015, 7, 19764.
[34] E. Armstronga and C. O′Dwyer, J. Mater. Chem. C, 2015, 3, 6109.
[35] 蔡宇博, 塗佈非虹彩光子晶體導電墨水, 碩士論文
[36] Y.-H. Hong, B.-S. Cheong and H.-G. Cho, Bull. Korean. Chem. Soc., 2017, 38, 1333.
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2021-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明