博碩士論文 108324071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.223.210.20
姓名 白承洋(Cheng-Yang Pai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 錫鉍/錫銀銅複合式低溫銲料之研究
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 共晶Sn58Bi銲料合金具有138oC的低熔點溫度,對於先進的電子構裝非常有吸引力。然而,合金的高硬度和脆性性質可能在處理過程中損壞設備並導致可靠性問題。在本研究中,引入了包含Sn0.3Ag0.7Cu(SAC0307)和SnBi的混合銲料形成SnBi/SAC0307之複合式銲料,使得相對延展性的SAC銲料可以用作緩衝層以吸收外部應力。試片以表面黏著技術(Surface Mount Technology,SMT)進行不同回流溫度封裝成印刷電路板 (Printed circuit board, PCB)。並採用Sn-56.8Bi-1Ag-0.2Cu銲料與SnBi/SAC0307 (Hybrid solder)複合式銲料比較其微結構及銲料之接點強度。對樣品進行75、100和125 ℃,5天、10天、20天之熱時效測試,觀察其界面反應及表面形貌,使用影像分析軟體計算出界面介金屬(Intermetallic Compounds, IMC)化合物的生長機制,並用動力學方式計算生成活化能。利用印刷電路板上不同規格的晶片元件(Chip component)進行推力測試以探討機械性質,並比較不同規格晶片元件之間推力強度差異。研究不同規格晶片元件的斷裂模式以及斷裂面之微觀結構並加以統計。經本實驗結果顯示,增加熱時效處理的溫度以及天數會使IMC的厚度線性增加。在推力測試中,SnBi銲料主要以脆性斷裂的機率較大;而SnBi/SAC0307複合式銲料於0603及0402規格的推力測試結果中以延性破壞為主,長時間的熱時效處理,混合銲料確實抑制了脆性斷裂,並且接點之機械性質有所提升。
摘要(英) The melting point of the eutectic Sn-58Bi solder at 138°C, is desirable for advanced electronic packaging; however, the high hardness and brittleness of this alloy can lead to the damage of devices during processes and cause a reliability issue. In this study, a hybrid solder containing Sn0.3Ag0.7Cu (SAC0307) and Sn-56.8Bi-1Ag-0.2Cu (SnBi) is introduced to improve the mechanical properties, and the SAC solder can be used as a buffer layer for absorbing external stress. Printed circuit boards (PCBs) are packaged with Sn56.8Bi1Ag0.2Cu and SnBi/SAC0307 (hybrid solder) by surface mount technology (SMT) under different reflow temperatures. Further, an aging test was conducted under 75°C, 100°C, and 125°C for 5, 10, and 20 days, respectively, and interface reactions and surface morphology are then investigated. Furthermore, an image analysis software is introduced to calculate the thickness of intermetallic compounds (IMC), and the activation formation energy can, therefore, be calculated by kinetics. The difference of the shear strength among varying sizes (0402, 0603, and 0805) of the chip component was compared by shear tests. The microstructure of different fracture modes and the fracture surface are observed, and the results are summarized. Results show that the thickness of the IMC increased linearly with the increase of aging time and temperature. Shear test results reveal that SnBi shows high possibility of brittle fracture, whereas the SnBi/SAC0307 hybrid solder represents a tendency of ductile fracture in the size of 0603 and 0402. To summarize, the hybrid solder indeed inhibits a brittle fracture, and the mechanical properties of joints is improved.
關鍵字(中) ★ 錫鉍
★ 銲料
★ 複合式銲料
★ 機械性質
★ 晶片元件
★ 電子封裝
關鍵字(英) ★ Sn-Bi
★ Solder
★ Hybrid solder
★ Mechanical properties
★ Chip component
★ Electronic packaging
論文目次 目錄
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
1-1前言 1
1-2 電子構裝 1
1-3 電子構裝層次 2
1-4 構裝技術 5
1-4-1 打線接合(Wire bonding) 6
1-4-2 捲帶式自動接合(Tape Automated Bonding, TAB) 7
1-4-3 覆晶封裝(Flip Chip) 8
1-5翹曲現象 8
第二章 文獻回顧 12
2-1 Pb-Sn 鉛錫合金之簡介 12
2-2 無鉛銲錫之性質需求 13
2-3 無鉛銲錫文獻回顧 15
2-3-1 Sn-Ag-Cu銲料 15
2-3-2 添加微量元素之Sn-Ag-Cu銲料 18
2-3-3 Sn-Bi銲料 20
2-3-4 常見添加於SnBi的微量元素 26
2-4 研究動機 27
第三章 實驗方法 28
3-1 樣品製備 28
3-2 真空封管技術 30
3-3 固相/固相界面反應 30
3-4 金相處理與試片分析 30
3-4-1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 31
3-4-2 能量散射光譜儀(Energy Dispersive Spectrometer,EDS) 31
3-4-3 推力測試 32
第四章 結果與討論 35
4-1 銲料與Cu基材之液相/固相界面反應 35
4-1-1 SnBi銲料與Cu基材之液相/固相界面反應 35
4-1-2 SnBi/SAC0307銲料與Cu基材之液相/固相界面反應 36
4-2 銲料與Cu基材之固相/固相界面反應 39
4-2-1 SnBi銲料與Cu基材之固相/固相界面反應 39
4-2-2 SnBi/SAC0307銲料與Cu基材之固相/固相界面反應 45
4-3 界面介金屬化合物之動力學探討 53
4-4 不同規格之晶片元件無鉛銲料之機械強度研究 58
4-4-1 銲料經推力測後的剪力值 58
4-4-2 銲料之接點強度比較 62
4-4-3 銲料之破壞模式分析 66
第五章 結論 71
參考文獻 73
參考文獻 [1]Schaller, R. R.. Moore′s law: past, present and future. IEEE spectrum, vol. 34,no. 6, pp. 52-59. 1997
[2]謝宗雍,”電子構裝技術簡介”,電子月刊第三卷第七期,1997 年 7 月, p.57-p.76
[3]莊達人編著,”VLSI 製造技術 ”,高立圖書有限公司,1995 (圖 1)
[4]R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, "Microelectronics Packaging Handbook", Semiconductor Packaging. Springer US, 2013
[5] 徐祥禎,電子構裝結構分析,中華民國力學協會,2009年
[6] Guenin B., " Update on JEDEC Thermal Standards", Electronics Cooling, September, 2012.
[7] 第二十三章 半導體製造概論
[8] He, Yi, et al. "Thermal characterization of an epoxy-based underfill material for flip chip packaging."Thermochimica Acta, vol. 357, pp. 1-8, 2000.
[9] Kim, Youngrae, et al. "Wafer warpage analysis of stacked wafers for 3D integration." Microelectronic engineering , vol. 89, pp 46-49, 2012.
[10] Amagai, Masazμmi. "Characterization of chip scale packaging materials. " Microelectronics Reliability , vol.39.9, pp. 1365-1377, 1999.
[11] Chia, J. Y. H., Cotterell, B., & Chai, T. C. " The mechanics of the solder ball shear test and the effect of shear rate. "Materials Science and Engineering: A, vol. 417, no.1-2, pp. 259-274, 2006.
[12] Cabezas, Eduardo E., and Diego J. Celentano. "Experimental and nμmerical analysis of the tensile test using sheet specimens." Finite Elements in Analysis and Design, vol. 40, no. 5-6, pp, 555-575, 2004.
[13] Istok, J. D et al., "Single‐well,“push‐pull test for in situ determination of microbial activities." Groundwater, vol. 35, no. 4, pp, 619-631. 1997.
[14] Panda, P. K et al., "Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment." Science and technology of advanced materials vol.3,no, 4 p-327, 2002.
[15] Huang, Xingjia, et al. "Characterization and analysis on the solder ball shear testing conditions." 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No. 01CH37220). IEEE, 2001.
[16] Ramkμmar, S. Manian, Reza Ghaffarian, and Arun Varanasi. "Lead-free 0201 manufacturing, assembly and reliability test results." Microelectronics Reliability, vol. 46, no. 2-4, pp. 244-262. 2006.
[17] Kμmar, Santosh, D. Jung, and J. Jung. "High-Speed Shear Test for Low Alpha SAC-105 Solder Ball of Sub-100-μm Dimension for Wafer Level Packaging." IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 3, pp. 441-451, 2013.
[18] P. T. Vianco and D. R. Frear,” Issues in the Replacement of Lead- Bearing Soldering”, Vol. 45, no. 7, pp.14-19, 1993.
[19] Miracle, Daniel B., et al. "ASM handbook. " Vol. 21. Materials Park, OH: ASM international, 2001.
[20] Directive, W. E. E. E. Waste electrical and electronic equipment directive. EU, 2002
[21] Directive, R. Restriction of Hazardous Substances Directive. 2002
[22] Z. Q. Mei, H. A. Holder, and H. A. VanderPlas, "Low-temperature solders, "Hewlett-Packard Journal, Vol.47, pp.91-98, 1996.
[23] S. L. Allen,M. R. Notis,R. R. Chromik and R. P. Vinci,"Microstructural Evolution in Lead-Free Solder Alloys: Part I. Cast Sn-Ag-Cu eutectic" ,Journal of Materials Research,vol. 19, pp.1417-1424, 2004.
[24] Cheng, Fangjie, et al. "Tensile of Sn-Ag-Cu interconnects," Journal of Materials Science: Materials in Electronics, vol. 17, no. 3 , pp. 171-178, 2006.
[25] Yang, Liu, et al. "Influence of Ag, Cu and additive Bi elements on the thermal property of low-Ag SAC solder alloys." Proceedings of 2011 6th International Forμm on Strategic Technology, Vol. 1, IEEE, 2011.
[26] H.Y. Lu, H. Balkan, & K.Y.S. Ng, "Effect of Ag content on the microstructure development properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys." Journal of Materials Science, vol. 46, no. 10, pp. 3424-3429, 2011.
[27] H.Y. Lu, H. Balkan, & K.Y.S. Ng. "Effect of Ag content on the microstructure development of Sn-Ag-Cu interconnects." Journal of Materials Science: Materials in Electronics, vol.17, no. 3, pp. 171-178, 2006.
[28] Zeng, Kejun, et al. "Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability." Journal of applied physics 97.2 (2005): 024508.
[29] Tseng, C. F., & Duh, J. G. "Correlation between microstructure evolution and mechanical strength in the Sn–3.0 Ag–0.5 Cu/ENEPIG solder joint. " Materials Science and Engineering: A, vol.580, pp. 169-174, 2013.
[30] Kanlayasiri, K., Mongkolwongrojn, M., & Ariga, T. "Influence of indium addition on characteristics of Sn–0.3 Ag–0.7 Cu solder alloy." Journal of Alloys and Compounds, vol. 485,no. 1-2, pp. 225-230, 2009.
[31] Chen, W., Kong, J., & Chen, W. J. "Effect of rare earth Ce on the microstructure, physical properties and thermal stability of a new lead-free solder." Journal of Mining and Metallurgy B: Metallurgy, vol. 47, no. 1, pp. 11-21, 2011.
[32] Qi, Lin, et al. "The effect of Bi on the IMC growth in Sn-3Ag-0.5 Cu solder interface during aging process." Proceedings of 2004 International Conference on the Business of Electrent Stressing of Sn-Bi/Cu Solder Interconnectonic Product Reliability and Liability (IEEE Cat. No. 04EX809). IEEE, 2004.
[33] Yang, Q. L., and Jian Ku Shang. "Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect." Journal of electronic materials, vol. 34, no. 11, pp. 1363-1367, 2005.
[34] Duscher, G, et al. "Bismuth-induced embrittlement of copper grain boundaries." Nature Materials, vol.3, no. 9 , pp. 621-626, 2004.
[35] Liu, Yang, et al. "Microstructure and shear behavior of solder joint with Sn58Bi/Sn3. 0Ag0. 5Cu/Cu superposition structure." Journal of Materials Science: Materials in Electronics, vol. 30, no. 15, pp. 14077-14084, 2019.
[36] Kim, J. W., et al. "Failure behaviors of BGA solder joints under various loading conditions of high-speed shear test." Journal of Materials Science: Materials in Electronics, vol.20, no .1, pp.17-24, 2009.
[37] J. W. Morris; J. L. Freer Goldstein; Z. Mei. "Microstructure and mechanical properties of Sn-In and Sn-Bi solders. " Journal of Materials Science, vol. 45, no. 7, pp. 25–27, 1993.
[38] J. Wang, H. S. Liu, L. B. Liu, Z. P. Jin. "Interfacial reaction between Sn-Bi alloy and Ni substrate. " , 35(10), 1842–1847, 2006.
[39] Hu, F. Q., et al., "Influences of Ag addition to Sn-58Bi solder on SnBi/Cu interfacial reaction." Materials Letters, vol. 214, pp. 142-145, 2018.
[40] Zhang, Q. K., H. F. Zou, & Z. F. Zhang. "Influences of substrate alloying and reflow temperature on Bi segregation behaviors at Sn-Bi/Cu interface." Journal of electronic materials, vol. 40, no.11, pp. 2320-2328, 2011.
[41] F. J Wang , Y Huang , Z. J. Zhang et al. "Interfacial Reaction and Mechanical Properties of Sn-Bi Solder joints.” Materials, Vol. 10, p.16, 2017.
[42] B. L. Silva, A Garcia, J. E. Spinelli. "Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu, Ag) solder alloys." Materials Characterization, vol. 114, no. 30-42, 2016.
[43] Shalaby, R. M. "Effect of silver and indium addition on mechanical properties and indentation creep behavior of rapidly solidified Bi–Sn based lead-free solder alloys. " Materials Science and Engineering: A, vol.560, pp. 86-95, 2013.
[44] Laurila, T., Vuorinen, V., & Kivilahti, J. K.. "Interfacial reactions between lead-free solders and common base materials. "Materials Science and Engineering: R: Reports, vol.49, no.1-2, pp.1-60, 2005.
[45] Yoon, J. W., Lee, C. B., & Jung, S. B."Interfacial reactions between Sn-58 mass% Bi eutectic solder and (Cu, electroless Ni-P/Cu) substrate. " Materials transactions, vol. 43, no. 8, pp. 1821-1826, 2002.
[46] Gain, A. K., & Zhang, L. " Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin–bismuth solder. " Journal of Materials Science: Materials in Electronics, vol.28, no.20, pp. 15718-15730, 2017.
[47] Pan, Jianbiao, et al. "The effect of reflow profile on SnPb and SnAgCu solder joint shear strength." Soldering & Surface Mount Technology (2006).
[48] Lee, B. S, & Yoon, J. W. "Cu-Sn intermetallic compound joints for high-temperature power electronics applications. " Journal of Electronic Materials, vol. 47, no. 1, pp. 430-435, 2018.
[49] Belyakov, S. A., et al. "Precipitation and coarsening of bismuth plates in Sn–Ag–Cu–Bi and Sn–Cu–Ni–Bi solder joints." Journal of Materials Science: Materials in Electronics, vol. 30, no.1, pp.378-390, 2019
指導教授 吳子嘉(Albert T. Wu) 審核日期 2021-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明