博碩士論文 108324604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.147.51.187
姓名 武忠孝(Trung Hieu Vo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 具有水下超親脂性的兩棲和超兩親性聚苯乙烯孔洞材料
(Amphibious superamphiphilic polystyrene monolith with underwater superoleophilicity)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 三維多孔聚苯乙烯整料是通過乳液模板製備的,它通過快速(在幾秒鐘內)吸收水和油滴在空氣中表現出超兩親性。當製備的聚苯乙烯整料浸入水中時,觀察到類似的行為並證明其兩棲超兩親性。在水下環境中,整料很容易充滿水,當與油滴接觸時,水可以完全被油取代,稱為水下超親油性。這些有趣的特性可歸因於乳液模板中提供的高孔隙率以及聚合後保留在互連孔界面處的親水和親油域。所製備的整料能夠吸收至少 20 種類型的溶劑,其最大吸收能力與其他聚苯乙烯吸收劑的性能相當。此外,水和癸烷吸收和解吸10次循環後吸收能力保持不變,表明其具有良好的可重複使用性。由於對油的高親和力,這種充滿水的整料能夠去除水中的溢油和有機污染物,並且可以用作水下捕油的高級吸收劑。
摘要(英) Three-dimensional porous polystyrene monolith was fabricated by emulsion templating and it showed superamphiphilicity in the air by absorption of both water and oil droplets rapidly (within seconds). When as-prepared polystyrene monolith was immersed in water, similar behaviors were observed and demonstrated its amphibious superamphiphilicity. In underwater environment, the monolith can be easily filled with water which can be completely displaced by oil as contact with oil droplets, referred to as underwater superoleophilicity. Those interesting properties can be attributed to high porosity provided in emulsion templating and the hydrophilic and oleophilic domains which remain at the interface of interconnected pores after polymerization. The as-prepared monolith was able to absorb at least twenty types of solvents and the maximum uptake capacity was comparable to the performances of other polystyrene absorbents. Moreover, the absorbing capacity remained unchanged after 10 cycles of water and decane absorption and desorption, indicating its good reusability. With the high affinity toward oil, the water-filled monolith is able to remove oil spillage and organic pollutants from water and it can be used as an advanced absorbent for underwater oil capture.
關鍵字(中) ★ 兩棲
★ 超兩親性
★ 多孔
★ 孔洞材料
關鍵字(英) ★ Amphibious
★ superamphiphilic
★ porous
★ monolith
論文目次 摘要 I
Abstract II
Acknowledgements III
Contents IV
List of Figures V
Chapter 1 INTRODUCTION 1
Chapter 2 EXPERIMENTAL SECTION 4
2-1 Materials 4
2-2 Preparation method 4
2-2-1 Preparation of emulsion glass 4
2-2-2 Polymerization of porous polystyrene monolith based on emulsion templating 4
2-3 Characterization 5
2-3-1 Observation of emulsion glass 5
2-3-2 Characterization of porous polystyrene monolith 5
2-4 Solvent absorption capacities and reusability test of the monolith 5
Chapter 3 RESULTS AND DISCUSTION 6
3-1 Synthesis and characterization of macroporous polystyrene monolith 6
3-2 Superamphiphilic property and amphibious superamphiphilicity 9
3-3 Solvent absorption capacity and application in oil removal 12
Chapter 4 CONCLUSION 15
Chapter 5 REFERENCES 16
參考文獻 [1] X. Qin, B. Wang, X. Zhang, Y. Shi, S. Ye, Y. Feng, C. Liu, C. Shen, Superelastic and durable hierarchical porous thermoplastic polyurethane monolith with excellent hydrophobicity for highly efficient oil/water separation, Industrial & Engineering Chemistry Research 58(44) (2019) 20291-20299.
[2] H. Zhang, R. Zhao, M. Pan, J. Deng, Y. Wu, Biobased, Porous Poly (high internal phase emulsions): Prepared from biomass-derived vanillin and laurinol and applied as an oil adsorbent, Industrial & Engineering Chemistry Research 58(14) (2019) 5533-5542.
[3] J. Chen, X. Jiang, D. Yin, W. Zhang, Preparation of a Hydrogel-Based Adsorbent for Metal Ions through High Internal Phase Emulsion Polymerization, ACS omega 5(32) (2020) 19920-19927.
[4] N.C. Grant, A.I. Cooper, H. Zhang, Uploading and temperature-controlled release of polymeric colloids via hydrophilic emulsion-templated porous polymers, ACS applied materials & interfaces 2(5) (2010) 1400-1406.
[5] G. Duan, A.R. Bagheri, S. Jiang, J. Golenser, S. Agarwal, A. Greiner, Exploration of macroporous polymeric sponges as drug carriers, Biomacromolecules 18(10) (2017) 3215-3221.
[6] A.C. Nalawade, R.V. Ghorpade, S. Shadbar, M.S. Qureshi, N. Chavan, A.A. Khan, S. Ponrathnam, Inverse high internal phase emulsion polymerization (i-HIPE) of GMMA, HEMA and GDMA for the preparation of superporous hydrogels as a tissue engineering scaffold, Journal of Materials Chemistry B 4(3) (2016) 450-460.
[7] J.L. Robinson, R.S. Moglia, M.C. Stuebben, M.A. McEnery, E. Cosgriff-Hernandez, Achieving interconnected pore architecture in injectable PolyHIPEs for bone tissue engineering, Tissue Engineering Part A 20(5-6) (2014) 1103-1112.
[8] T. Zhang, Z. Xu, H. Gui, Q. Guo, Emulsion-templated, macroporous hydrogels for enhancing water efficiency in fighting fires, Journal of materials chemistry A 5(21) (2017) 10161-10164.
[9] Q. Hou, D.W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze‐drying process, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 67(2) (2003) 732-740.
[10] J.-W. Kim, K. Taki, S. Nagamine, M. Ohshima, Preparation of porous poly (L-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing, Langmuir 25(9) (2009) 5304-5312.
[11] N. Mac Kenna, A. Morrin, Inducing macroporosity in hydrogels using hydrogen peroxide as a blowing agent, Materials Chemistry Frontiers 1(2) (2017) 394-401.
[12] Y. Xin, T. Fujimoto, H. Uyama, Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method, Polymer 53(14) (2012) 2847-2853.
[13] X. Sun, G. Sun, X. Wang, Morphology modeling for polymer monolith obtained by non-solvent-induced phase separation, Polymer 108 (2017) 432-441.
[14] T. Zhang, R.A. Sanguramath, S. Israel, M.S. Silverstein, Emulsion templating: porous polymers and beyond, Macromolecules 52(15) (2019) 5445-5479.
[15] T. Zhang, M.S. Silverstein, Microphase-separated macroporous polymers from an emulsion-templated reactive triblock copolymer, Macromolecules 51(10) (2018) 3828-3835.
[16] M. Tebboth, Q. Jiang, A. Kogelbauer, A. Bismarck, Inflatable elastomeric macroporous polymers synthesized from medium internal phase emulsion templates, ACS applied materials & interfaces 7(34) (2015) 19243-19250.
[17] J. Sjoblom, Emulsions and emulsion stability: Surfactant science series/61, crc press2005.
[18] S.-W. Hu, P.-J. Sung, T.P. Nguyen, Y.-J. Sheng, H.-K. Tsao, UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing, ACS applied materials & interfaces 12(21) (2020) 24450-24457.
[19] K. Lissant, The geometry of high-internal-phase-ratio emulsions, Journal of colloid and interface science 22(5) (1966) 462-468.
[20] N.L. Krajnc, F. Smrekar, V. Frankovicˇ, A. Štrancar, A. Podgornik, Monolithic macroporous polymers as chromatographic matrices, Macroporous Polymers: Production Properties and Biotechnological/Biomedical Applications, CRC Press2009, pp. 291-334.
[21] D. Golub, P. Krajnc, Emulsion templated hydrophilic polymethacrylates. Morphological features, water and dye absorption, Reactive and Functional Polymers 149 (2020) 104515.
[22] T. Zhang, X. Li, W. Wang, Z. Xu, Y. Zhao, Interface‐Initiated Polymerization Enables One‐Pot Synthesis of Hydrophilic and Oleophobic Foams through Emulsion Templating, Macromolecular rapid communications 40(21) (2019) 1900288.
[23] T. Zhang, M.S. Silverstein, Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer, Polymer 168 (2019) 146-154.
[24] P. Jing, X. Fang, J. Yan, J. Guo, Y. Fang, Ultra-low density porous polystyrene monolith: facile preparation and superior application, Journal of Materials Chemistry A 1(35) (2013) 10135-10141.
[25] S. Yu, H. Tan, J. Wang, X. Liu, K. Zhou, High porosity supermacroporous polystyrene materials with excellent oil–water separation and gas permeability properties, ACS applied materials & interfaces 7(12) (2015) 6745-6753.
[26] G. Wang, H. Uyama, Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water, Scientific reports 6(1) (2016) 1-6.
[27] X. Liu, F. Guo, Y. Dong, W. Li, Synthesis of an amphibious superamphiphilic carbon-based materials with unique properties, New Journal of Chemistry 44(38) (2020) 16351-16357.
[28] Z. Bao, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation, Journal of Membrane Science 598 (2020) 117804.
[29] Z. Zhu, Y. Tian, Y. Chen, Z. Gu, S. Wang, L. Jiang, Superamphiphilic silicon wafer surfaces and applications for uniform polymer film fabrication, Angewandte Chemie 129(21) (2017) 5814-5818.
[30] V.-T. Bui, X. Liu, S.H. Ko, H.-S. Choi, Super-amphiphilic surface of nano silica/polyurethane hybrid coated PET film via a plasma treatment, Journal of colloid and interface science 453 (2015) 209-215.
[31] X. Song, Y. Chen, M. Rong, Z. Xie, T. Zhao, Y. Wang, X. Chen, O.S. Wolfbeis, A phytic acid induced super‐amphiphilic multifunctional 3D graphene‐based foam, Angewandte Chemie International Edition 55(12) (2016) 3936-3941.
[32] K. Yang, J. Du, Z. Zhang, D. Liu, T. Ren, Facile and eco-friendly preparation of super-amphiphilic porous polycaprolactone, Journal of colloid and interface science 560 (2020) 795-801.
[33] X. Zhang, D. Liu, G. Sui, Superamphiphilic polyurethane foams synergized from cellulose nanowhiskers and graphene nanoplatelets, Advanced Materials Interfaces 5(2) (2018) 1701094.
[34] J. Yong, Q. Yang, X. Hou, F. Chen, Relationship and Interconversion Between Superhydrophilicity, Underwater Superoleophilicity, Underwater Superaerophilicity, Superhydrophobicity, Underwater Superoleophobicity, and Underwater Superaerophobicity: A Mini-Review, Frontiers in Chemistry 8 (2020).
[35] M. Jin, J. Wang, X. Yao, M. Liao, Y. Zhao, L. Jiang, Underwater Oil Capture by a Three-Dimensional Network Architectured Organosilane Surface, Advanced Materials 23(25) (2011) 2861-2864.
[36] Y. Sun, J. Huang, Z. Guo, W. Liu, Is superhydrophobicity equal to underwater superoleophilicity? Hydrophilic wetting defects on a superhydrophobic matrix with switchable superdewetting in both air and water, Journal of Materials Chemistry A 9(3) (2021) 1471-1479.
[37] S. Fu, H. Zhou, H. Wang, H. Niu, W. Yang, H. Shao, T. Lin, Amphibious superamphiphilic fabrics with self-healing underwater superoleophilicity, Materials Horizons 6(1) (2019) 122-129.
[38] H. Hamamoto, K. Himei, S. Inoue, H. Aota, A. Matsumoto, Microgel-like network polymer precursor formation in free-radical cross-linking multiallyl polymerization, Polymer Journal 42(12) (2010) 923-927.
[39] A. Matsumoto, Polymerization of multiallyl monomers, Progress in Polymer Science 26(2) (2001) 189-257.
[40] S. Bednarz, A. Błaszczyk, D. Błażejewska, D. Bogdał, Free-radical polymerization of itaconic acid in the presence of choline salts: Mechanism of persulfate decomposition, Catalysis Today 257 (2015) 297-304.
[41] C. Ye, V.S.D. Voet, R. Folkersma, K. Loos, Robust Superamphiphilic Membrane with a Closed-Loop Life Cycle, Advanced Materials 33(15) (2021) 2008460.
[42] J. Yang, Q. Xiao, X. Jia, Y. Li, S. Wang, H. Song, Enhancement of wastewater treatment by underwater superelastic fiber-penetrated lamellar monolith, Journal of Hazardous Materials 403 (2021) 124016.
[43] C.-F. Wang, H.-C. Huang, L.-T. Chen, Protonated Melamine Sponge for Effective Oil/Water Separation, Scientific Reports 5(1) (2015) 14294.
[44] T.-S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature 477(7365) (2011) 443-447.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2021-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明