博碩士論文 108327001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.239.9.151
姓名 郭俊廷(Jun-Ting Kuo)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 使用狀態相關Riccati方程式控制器設計實現雙輪機器人
(Real Implementation of Two-Wheeled Robot Based on Novel Analysis and Design of State-Dependent Riccati Equation Controller)
相關論文
★ 使用快速狀態相關微分Riccati方程方案的衝擊角導引★ 使用快速觀測器的SDRE控制方案應用在電動車的馬達驅動系統
★ 基於快速狀態相關微分形式黎卡迪方程式導控策略對於機動目標的攔截於預先規畫之方向
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究使用狀態相關Riccati方程式(state-dependent Riccati equation, SDRE) 方案於兩輪倒單擺機器人的非線性控制器設計和實現。根據系統數學模型設計兩輪平衡機器人的車體機構,通過Inventor軟體建構3D模型獲得一些重要參數,並以MATLAB®撰寫程式設計SDRE控制器,完成機器人的姿態平衡控制目標。系統軟硬件架構主要以搭載Windows系統的LattePanda開發版為上位機,結合運用RS-485以Modbus RTU通訊協定、馬達驅動控制技術、IMU 姿態量測技術等等,擷取必要之系統狀態變量。本研究進一步分析了狀態相關矩陣對應的逐點代數Riccati 方程式的可解性,通過降維得出的可解性簡單等價條件,可以有效減少逐點檢驗SDRE 方案可解性的大量計算負擔。然後設計SDRE 控制器以獲得最優控制律,通過輸出電壓Duty 模式驅動電機旋轉,成功控制兩輪機器人完成姿態平衡。
摘要(英) This thesis mainly studies the design and implementation of nonlinear controllers for two-wheeled inverted pendulum robots using the state-dependent Riccati equation (SDRE) scheme. According to the mathematical model of the system, the body mechanism of the two-wheeled balancing robot is designed, some important parameters are obtained by constructing a 3D model with Inventor software, and the SDRE controller is programmed with MATLAB® to complete the robot’s postural balance control goal. The system software and hardware architecture are mainly based on the LattePanda development version equipped with Windows system as the host computer, combined with the use of RS-485, Modbus RTU communication protocol, motor drive control technology, IMU attitude measurement technology, etc., to capture necessary system state variables. This study further analyzes the solvability of the pointwise algebraic Riccati equation (ARE) corresponding to the state-dependent coefficients (SDCs) matrix. The simple equivalence conditions for solvability obtained through dimensionality reduction can effectively reduce the computational burden of pointwise testing of the solvability of the SDRE scheme. Then design the SDRE controller to obtain the optimal control law, drive the motor to rotate through the output voltage Duty mode, and successfully control the two-wheeled robot to complete the postural balance.
關鍵字(中) ★ 非線性控制
★ 兩輪倒單擺
★ 狀態相關Riccati方程式
關鍵字(英) ★ Nonlinear control
★ two-wheeled inverted pendulum
★ state-dependent Riccati equation (SDRE)
論文目次 摘要iv
Abstract v
誌謝vii
目錄viii
圖目錄xi
表目錄xiii
符號說明xiv
一、緒論1
1.1 研究動機.................................................................. 1
1.2 本文結構.................................................................. 4
二、機構設計與系統架構6
2.1 車體機構設計............................................................ 7
2.1.1 Inventor 3D 建模................................................ 8
2.1.2 擺體長度l 與慣性矩I1、I2、I3 ............................. 8
2.1.3 車輪的轉動慣量J 與轉動動能K .......................... 10
2.2 系統硬體架構............................................................ 10
2.2.1 LattePanda Board................................................ 12
2.2.2 充電鋰電池...................................................... 13
2.2.3 直流無刷馬達(BLDC Motor) ................................ 14
2.2.4 馬達驅動器...................................................... 17
2.2.5 慣性量測元件(IMU)........................................... 18
2.2.6 RS-485 通訊..................................................... 20
三、SDRE 控制器設計24
3.1 SDRE 方案概論.......................................................... 24
3.1.1 引理1 (Lemma 1) ............................................... 27
3.2 SDRE 設計流程.......................................................... 29
四、TWIP 系統動態模型32
4.1 TWIP 狀態空間模型.................................................... 32
4.2 SDC 矩陣設計............................................................ 35
4.2.1 引理2 (Lemma 2) ............................................... 38
4.2.2 可解性分析(Solvability Analysis) ........................... 38
4.2.3 定理一(Theorem 1)............................................. 44
4.3 TWIP 系統模擬.......................................................... 46
五、SDRE 控制器實現48
5.1 實驗方法.................................................................. 48
5.2 實驗結果.................................................................. 50
5.2.1 姿態平衡實驗一................................................ 50
5.2.2 姿態平衡實驗二................................................ 53
六、結論57
6.1 結論........................................................................ 57
6.2 未來展望.................................................................. 58
參考文獻60
參考文獻 [1] S. Kim and S. J. Kwon, “Nonlinear optimal control design for underactuated
two-wheeled inverted pendulum mobile platform,” IEEE/ASME
Trans. Mechatron., vol. 22, no. 6, pp. 2803–2808, 2017.
[2] LattePanda Alpha 864s. [Online]. Available: https://www.lattepanda.
com/products/lattepanda-alpha-864s.html
[3] Motion technology electric & machinery co., LTD. [Online]. Available:
https://www.motiontech.com.tw/
[4] T. Çimen, “Systematic and effective design of nonlinear feedback controllers
via the state-dependent Riccati equation SDRE method,” Annu.
Rev. Control, vol. 34, no. 1, pp. 32–51, 2010.
[5] S. Kim and S. J. Kwon, “Dynamic modeling of a two-wheeled inverted
pendulum balancing mobile robot,” Int. J. Control Autom. Syst., vol. 13,
no. 4, pp. 926–933, 2015.
[6] F. Lambert. (2021, Mar.) Biden proposes $174 billion investment in
electric vehicles. Electrek. [Online]. Available: https://electrek.co/2021/
03/31/biden-proposes-174-billion-investment-electric-vehicles/
[7] L.-G. Lin and M. Xin, “Nonlinear control of two-wheeled robot based on
novel analysis and design of SDRE scheme,” IEEE Trans. Control Syst.
Technol., vol. 28, no. 3, pp. 1140–1148, 2020.
[8] R. M. Brisilla and V. Sankaranarayanan, “Nonlinear control of mobile inverted
pendulum,” Robot. Auton. Syst., vol. 70, pp. 145–155, 2015.
[9] M. R. M. Romlay, M. I. Azhar, S. F. Toha, and M. M. Rashid, “Two-wheel
balancing robot; review on control methods and experiments,” Int. J. of
Recent Technol. and Eng., vol. 7, no. 6S, pp. 106–112, 2019.
[10] Segway-Ninebot. [Online]. Available: http://ap-en.segway.com/
[11] R. P. M. Chan, K. A. Stol, and C. . Halkyard, “Review of modelling and
control of two-wheeled robots,” Annu. Rev. Control, vol. 37, no. 1, pp.
89–103, 2013.
[12] C.-F. Huang and T.-J. Yeh, “Anti slip balancing control for wheeled inverted
pendulum vehicles,” IEEE Trans. Control Syst. Technol., vol. 28,
no. 3, pp. 1042–1049, 2020.
[13] Boston Dynamics. [Online]. Available: https://www.bostondynamics.
com/
[14] M. Yue, C. An, and J. Sun, “Zero dynamics stabilisation and adaptive trajectory
tracking for WIP vehicles through feedback linearisation and LQR
technique,” Int. J. Control, vol. 89, no. 12, pp. 2533–2542, 2016.
[15] C.-H. Huang, W.-J. Wang, and C.-H. Chiu, “Design and implementation
of fuzzy control on a two-wheel inverted pendulum,” IEEE Trans. Ind.
Electron., vol. 58, no. 7, pp. 2988–3001, 2011.
[16] Z. Li and C. Xu, “Adaptive fuzzy logic control of dynamic balance and
motion for wheeled inverted pendulums,” Fuzzy Sets Syst., vol. 160, no. 12,
pp. 1787–1803, 2009.
[17] J.-X. Xu, Z.-Q. Guo, and T. H. Lee, “Design and implementation of
a Takagi−Sugeno-type fuzzy logic controller on a two-wheeled mobile
robot,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5717–5728, 2013.
[18] Z. Li and C. Yang, “Neural-adaptive output feedback control of a class
of transportation vehicles based on wheeled inverted pendulum models,”
IEEE Trans. Control Syst. Technol., vol. 20, no. 6, pp. 1583–1591, 2012.
[19] C. Yang, Z. Li, R. Cui, and B. Xu, “Neural network-based motion control
of an underactuated wheeled inverted pendulum model,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 25, no. 11, pp. 2004–2016, 2014.
[20] Y.-W. Liang, S.-D. Xu, D.-C. Liaw, and C.-C. Chen, “A study of T−S
model-based SMC scheme with application to robot control,” IEEE Trans.
Ind. Electron., vol. 55, no. 11, pp. 3964–3971, 2008.
[21] K. Yokoyama and M. Takahashi, “Dynamics-based nonlinear acceleration
control with energy shaping for a mobile inverted pendulum with a slider
mechanism,” IEEE Trans. Control Syst. Technol., vol. 24, no. 1, pp. 40–55,
2016.
[22] J.-X. Xu, Z.-Q. Guo, and T. H. Lee, “Design and implementation of integral
sliding-mode control on an underactuated two-wheeled mobile robot,”
IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3671–3681, 2014.
[23] S.-W. Kim, S.-Y. Park, and C. Park, “Spacecraft attitude control using
neuro-fuzzy approximation of the optimal controllers,” Adv. Space Res.,
vol. 57, no. 1, pp. 137–152, 2016.
[24] A. S. Saeed, A. B. Younes, C. Cai, and G. Cai, “A survey of hybrid unmanned
aerial vehicles,” Prog. Aero. Sci., vol. 98, pp. 91–105, Apr. 2018.
[25] E. B. Erdem and A. G. Alleyne, “Design of a class of nonlinear controllers
via state dependent Riccati equations,” IEEE Trans. Control Syst. Technol.,
vol. 12, no. 1, pp. 133–137, 2004.
[26] J. R. Cloutier, C. N. D’Souza, and C. P. Mracek, “Nonlinear regulation
and nonlinear H∞ control via the state-dependent Riccati equation technique:
Part 1, Theory; Part 2, Examples,” in Proc. of the Internat. Conf.
on Nonlinear Probl. in Aviation and Aerosp., 1996, pp. 117–141.
[27] Y. Batmani, M. Davoodi, and N. Meskin, “Nonlinear suboptimal tracking
controller design using state-dependent Riccati equation technique,” IEEE
Trans. Control Syst. Technol., vol. 25, no. 5, pp. 1833–1839, 2017.
[28] J. Pittner and M. A. Simaan, “Streamlining the tandem hot-metal-strip mill:
Threading progress stems from the use of advanced control with virtual
rolling,” IEEE Ind. Appl. Mag., vol. 24, no. 2, pp. 35–44, 2018.
[29] V. N. Afanas’ev, “Control of nonlinear uncertain object in the problem of
motion along the given trajectory,” Automat. Rem. Contr., vol. 76, no. 1,
pp. 1–15, 2015.
[30] J. W. Curtis and R. W. Beard, “Satisficing: A new approach to constructive
nonlinear control,” IEEE Trans. Autom. Control., vol. 49, no. 7, pp. 1090–
1102, 2004.
[31] T. Çimen, “Survey of state-dependent Riccati equation in nonlinear optimal
deedback control synthesis,” J. Guid. Control Dyn., vol. 35, no. 4, pp.
1025–1047, 2012.
[32] C.-C. Chen, Y.-W. Liang, and W.-M. Jhu, “Global stability of a system
with state-dependent Riccati equation controller,” J. Guid. Control Dyn.,
vol. 38, no. 10, pp. 2050–2054, 2015.
[33] L.-G. Lin, Y.-W. Liang, and L.-J. Cheng, “Control for a class of secondorder
systems via a state-dependent Riccati equation approach,” SIAM J.
Control Optim., vol. 56, no. 1, pp. 1–18, 2018.
[34] K. D. Hammett, C. D. Hall, and D. B. Ridgely, “Controllability issues in
nonlinear state-dependent Riccati equation control,” J. Guid. Control Dyn.,
vol. 21, no. 5, pp. 767–773, 1998.
[35] W. Langson and A. Alleyne, “A stability result with application to nonlinear
regulation,” ASME J. Dyn. Syst. Meas. Control., vol. 124, no. 3, pp.
452–456, 2002.
[36] A. P. Dani, S.-J. Chung, and S. Hutchinson, “Observer design for stochastic
nonlinear systems via contraction-based incremental stability,” IEEE
Trans. Autom. Control, vol. 60, no. 3, pp. 700–714, 2015.
[37] S. Rostami, A. Sangaiah, J. Wang, and H.-J. Kim, “Real-time obstacle
avoidance of mobile robots using state-dependent Riccati equation approach,”
EURASIP J. Image Video Process., vol. 2018, no. 79, pp. 1–13,
2018.
[38] P. Razzaghi, E. Al Khatib, and Y. Hurmuzlu, “Nonlinear dynamics and
control of an inertially actuated jumper robot,” Nonlinear Dyn., vol. 97,
no. 1, pp. 161–176, 2019.
[39] S. J. Kwon, S. Kim, and J. Yu, “Tilting-type balancing mobile robot
platform for enhancing lateral stability,” IEEE/ASME Trans. Mechatron.,
vol. 20, no. 3, pp. 1470–1481, 2015.
[40] F. P. Beer, E. R. Johnston, Jr., and P. J. Cornwell, Vector Mechanics for
Engineers: Dynamics, 10th ed. McGraw-Hill Publishing Company, 2012.
[41] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters,
Applications, and Design, 3rd ed. John Wiley & Sons, 2002.
[42] M. Brossard, A. Barrau, and S. Bonnabel, “AI-IMU Dead-Reckoning,”
IEEE Trans. Intell. Veh., vol. 5, no. 4, pp. 585–595, 2020.
[43] C. Eling, L. Klingbeil, and H. Kuhlmann, “Real-time single-frequency
GPS/MEMS-IMU attitude determination of lightweight UAVs,” Sensors,
vol. 15, no. 10, pp. 26 212–26 235, 2015.
[44] H.-J. Jia and Z.-H. Guo, “Research on the technology of RS485 over ethernet,”
in 2010 International Conference on E-Product E-Service and EEntertainment,
2010, pp. 1–3.
[45] L.-G. Lin and M. Xin, “Computational enhancement of the SDRE scheme:
General theory and robotic control system,” IEEE Trans. Robot., vol. 36,
no. 3, pp. 875–893, 2020.
[46] L.-G. Lin, J. Vandewalle, and Y.-W. Liang, “Analytical representation of
the state-dependent coefficients in the SDRE/SDDRE scheme for multivariable
systems,” Automatica, vol. 59, no. 9, pp. 106–111, 2015.
[47] L.-G. Lin and M. Xin, “Missile guidance law based on new analysis and
design of SDRE scheme,” J. Guid. Control Dyn., vol. 42, no. 4, pp. 853–
868, 2019.
[48] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Prentice
Hall Upper Saddle River, NJ, 1996.
[49] C. Wang, W. Dong, J. Wang, and J. Shan, “Nonlinear suboptimal guidance
law with impact angle constraint: An SDRE-based approach,” IEEE Trans.
Aerosp. and Electron. Syst., vol. 56, no. 6, pp. 4831–4840, 2020.
[50] MATLAB Documentation, The Mathworks, Inc. (“minreal”, “lqr”, and
“ode45” functions). [Online]. Available: https://www.mathworks.com/
help/
[51] W. F. Arnold III and A. J. Laub, “Generalized eigenproblem algorithms
and software for algebraic Riccati equations,” Proc. of the IEEE, vol. 72,
no. 12, pp. 1746–1754, 1984.
[52] C.-T. Chen, Linear System Theory and Design, 2nd ed. New York, NY,
USA: Holt, Rinehart Winston, 1984.
[53] S. J. Leon, Linear Algebra with Applications, 6th ed. Upper Saddle River,
NJ: Prentice Hall, 2002.
指導教授 林立岡(Li-Gang Lin) 審核日期 2022-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明