博碩士論文 108327008 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:
姓名 盧昱維(Yu-Wei Lu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 使用快速觀測器的SDRE控制方案應用在電動車的馬達驅動系統
(Fast Observer-Based SDRE Controller for Motor Drive System in Electric Vehicles)
★ 使用快速狀態相關微分Riccati方程方案的衝擊角導引★ 使用狀態相關Riccati方程式控制器設計實現雙輪機器人
★ 基於快速狀態相關微分形式黎卡迪方程式導控策略對於機動目標的攔截於預先規畫之方向
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文利用一個新穎的控制手法state-dependent Riccati equation (SDRE),透過提出了一個有效保證基於SDRE控制手法的初步適用性問題的理論分析框架,並實現在一套permanent-magnet synchronous motor (PMSM)驅動控制系統上再對所關心的議題加以進行探討。從研究結果得知,所提出框架的優勢在於透過一個替代及整合式的理論分析架構對於系統空間維度進行等價縮減的工作,其中成功地移除任何不必要且繁瑣對於使用SDRE方案時的前置作業(適用性或可解性查驗);具體來說,也就是指向那些在求解每一時間系統狀態可解性前的查驗步驟。將利用所提出的理論分析框架經過實驗結果證明能顯著地減輕求解SDRE方案過程所造成的主要計算負擔,進一步詳細的內容會在模擬驗證與分析章節中做說明和呈現。為了使我們所關心的議題能走出一條長久且獨樹一格的道路,本文同時也引進了一個少為人知但極具競爭力關於求解Riccati方程式的一種新穎的求解方法,其擁有高效率的優勢是透過在計算過程的一些複雜性分析步驟所獲取;值得一提的是,此方法於現今廣泛的研究領域中經過諸多文獻的試驗後從中脫穎而出。透過結合此替代求解方法以及所提出的理論分析框架利用原參考文獻中同樣的實驗環境下進行驗證後,再經由統整過後的數據便可以發現明顯地降低整體約91-93%的計算負擔量。由於所討論的此類PMSM馬達本身擁有快速響應的特性,因此透過本文的研究進一步減輕在計算過程方面所造成多餘的負擔,在這些有大幅提升的成果下使得更有能力吸引在相關領域(特別在馬達領域)對此有特別需求的研究者注目到本文所帶來的影響,並也期待對此方案進而產生興趣使得未來能早日有突破性的進展。最後,不僅僅是以上所陳述的內容才帶有在相關領域一定程度的影響力;另外一方面,在對系統發生相關變化(如: 參數異動)所保有的強健性能力以及將所提出的框架延伸並應用在不同系統設計(如: 跨領域或非基於SDRE方案)所帶來的適用性結果也都是含括在本文所討論的範圍之中。
摘要(英) This thesis utilizes a novel control technique, which called state-dependent Riccati equation (SDRE). By using the proposed theoretical analyses framework to efficiently guarantee the preliminary applicability of the SDRE-based control technique, and also implements on a permanent-magnet synchronous motor (PMSM) control drive system to further discuss the concerned topic. According to the research results, the advantage of the proposed framework lies in an equivalent dimension reduction in the system space through an integrated theoretical analyses scope, which successfully remove any unnecessary pre-works before using the SDRE scheme. Specifically, it can be referred to the applicability/solvability-checking before the duration of solving system states at each time instant. From the viewpoint of experimental results, the proposed theoretical analyses framework will have a significant effect to alleviate the main computational burden that caused by the solvability-checking of SDRE, and some further detailed discussions will also being explained and presented in the latest chapter of simulation verification and analyses. In order to make the concerned issue to have a much longer and more unique path, while this thesis introduces a much-less-known but quite competitive method for solving the Riccati equation, whose highly efficient merits are owning to its complex structures. Note that, this method stands out after being tested by tremendous literatures in a wide range of research fields nowadays via its improvement of computational efficiency. By combining this up-to-date method and the proposed theoretical analyses in a same experimental setup that stated in the original reference, it can be found that the overall improvement obviously amounts about 91-93% reduction after the statistics through the whole system. Due to the characteristic of fast system response, the research in this thesis further completely reduces the redundant burden caused by the calculation process, otherwise, these great results can also make more attention from the researchers who have such specific demands in the related fields, thus, they will have more focus on the impact of the proposed results. By the established confidence, we are also looking forward to bring such an enthusiasm from the proposed enhancement to have an outstanding vision in the future. Finally, it is not only focus on a certain degree of influence from the above mentioned; on the other hand, the robustness of the system that associated to such as parameter changes and the efficiency of extending/applying the proposed framework to a variety of system designs (e.g. cross discipline and non-SDRE-based applications) are also considered in the thesis.
關鍵字(中) ★ 馬達驅動系統
★ state-dependent Riccati equation (SDRE)
★ 系統適用性與計算工作分析
★ 基於觀測器的控制器設計
論文目次 摘要 iv
Abstract vi
誌謝 viii
目錄 ix
圖目錄 xii
表目錄 xiii
符號說明 xiv
一、 緒論 1
1.1 研究動機 1
1.2 研究目的 6
1.3 文章架構 9
二、 研究方法 11
2.1 State-dependent Riccati equation (SDRE)方案 11
三、建立在PMSM驅動控制系統上的模型設計 15
3.1 基於SDRE控制方案的觀測器設計[1] 18
3.2 基於SDRE控制方案的控制器設計[1] 19
3.3 總結第3章 20
四、 主要理論分析 22
4.1 問題陳述 22
4.2 逐點等價的條件 24
4.3 滿足可行SDC矩陣的條件 25
4.4 等價和降維 25
4.5 實際套用4.4節至控制器和觀測器設計中進行分析 27
4.6 補充說明4.5節 29
4.7 4.5節以及4.6節的重要性 29
五、 模擬驗證分析結果 35
5.1 主要計算提升 37
5.2 次要計算提升 40
5.3 比較不同求解方法的輸出響應(精確性或計算後剩餘的數值) 44
5.4 透過具代表性的指標加以檢視系統的性能表現 47
5.5 總結第5章 54
六、 普遍性與影響力 57
6.1 驗證所提出結果的普遍性 58
6.2 6.1節在相關文獻上的適用性 62
6.3 將所提出的結果推廣至車輛(載具)科技領域中的文獻 64
6.4 總結6.3節 68
6.5 總結第6章 71
七、結論與未來展望 73
7.1 結論 73
7.2 未來展望 77
參考文獻 78
附錄A 演算法1 85
A.1 說明附錄A 86
參考文獻 [1] T. D. Do, S. Kwak, H. H. Choi, and J.-W. Jung, “Suboptimal control
scheme design for interior permanent-magnet synchronous motors: An
SDRE-based approach,” IEEE Trans. Power Electron., vol. 29, no. 6,
pp. 3020–3031, 2014.
[2] G. V. Kumar, C.-H. Chuang, M.-Z. Lu, and C.-M. Liaw, “Development of
an electric vehicle synchronous reluctance motor drive,” IEEE Trans. Veh.
Technol., vol. 69, no. 5, pp. 5012–5024, 2020.
[3] X. Sun, Z. Shi, Y. Cai, G. Lei, Y. Guo, and J. Zhu, “Driving-cycle-oriented
design optimization of a permanent magnet hub motor drive system for a
four-wheel-drive electric vehicle,” IEEE Trans. Transp. Electrif., vol. 6,
no. 3, pp. 1115–1125, 2020.
[4] Z. Skidmore, “Electric vehicle sales surge in 2021,” Sep. 2021. [Online].
Available: https:// www.power-technology.com/ news/ electric-vehiclesales-
[5] BloombergNEF (BNEF). [Online]. Available: https://about.bnef.com/
[6] Canalys. [Online]. Available: https:// www.canalys.com/ newsroom/
[7] F. Lambert, “Biden proposes $174 billion investment in electric vehicles,”
Mar. 2021. [Online]. Available: https://electrek.co/2021/03/31/bidenproposes-
[8] B. Vaidya and H. T. Mouftah, “Smart electric vehicle charging management
for smart cities,” IET Smart Cities, vol. 2, no. 1, pp. 4–13, 2020.
[9] IEA, “Global EV Outlook 2021,” Apr. 2021. [Online]. Available: https://
[10] S.-W. Hwang, J.-Y. Ryu, J.-W. Chin, S.-H. Park, D.-K. Kim, and M.-S.
Lim, “Coupled electromagnetic-thermal analysis for predicting traction
motor characteristics according to electric vehicle driving cycle,” IEEE
Trans. Veh. Technol., vol. 70, pp. 4262–4272, 2021.
[11] X. Wang, M. Reitz, and E. E. Yaz, “Field oriented sliding mode control
of surface-mounted permanent magnet AC motors: Theory and applications
to electrified vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 10343–10356, 2018.
[12] X. Zhang, K. Yan, and W. Zhang, “Composite vector model predictive
control with time-varying control period for PMSM drives,” IEEE Trans.
Transp. Electrif., vol. 7, no. 3, pp. 1415–1426, 2020.
[13] A. G. Abo-Khalil, A. M. Eltamaly, M. S. Alsaud, K. Sayed, and A. S.
Alghamdi, “Sensorless control for PMSM using model reference adaptive
system,” Int. Trans. Electr. Energy Syst., vol. 31, no. 2, p. e12733, 2021.
[14] J. Su, J. Wu, P. Cheng, and J. Chen, “Autonomous vehicle control through
the dynamics and controller learning,” IEEE Trans. Veh. Technol., vol. 67,
no. 7, pp. 5650–5657, 2018.
[15] L.-G. Lin and M. Xin, “Nonlinear control of two-wheeled robot based on
novel analysis and design of SDRE scheme,” IEEE Trans. Control Syst.
Technol., vol. 28, no. 3, pp. 1140–1148, 2020.
[16] S. R. Nekoo, “Tutorial and review on the state-dependent Riccati equation,”
J. Appl. Nonlinear Dyn., vol. 8, no. 2, pp. 109–166, 2019.
[17] T. Çimen, “Survey of state-dependent Riccati equation in nonlinear optimal
feedback control synthesis,” J. Guid. Control Dyn., vol. 35, no. 4,
pp. 1025–1047, 2012.
[18] A. S. Saeed, A. Bani Younes, C. Cai, and G. Cai, “A survey of hybrid
unmanned aerial vehicles,” Prog. Aero. Sci., vol. 98, pp. 91–105, 2018.
[19] C. Xia, N. Liu, Z. Zhou, Y. Yan, and T. Shi, “Steady-state performance improvement
for LQR-based PMSM drives,” IEEE Trans. Power Electron.,
vol. 33, no. 12, pp. 10622–10632, 2018.
[20] W. Cao, L. Wang, J. Li, C. Peng, J. Zhou, and H. He, “Analysis and design
of drivetrain control for the AEV with network-induced compoundingconstruction
loop delays,” IEEE Trans. Veh. Technol., vol. 70, pp. 5578–
5591, 2021.
[21] J. Pittner and M. A. Simaan, “Streamlining the tandem hot-metal-strip mill:
Threading progress stems from the use of advanced control with virtual
rolling,” IEEE Ind. Appl. Mag., vol. 24, no. 2, pp. 35–44, 2018.
[22] P. Quillen and K. Subbarao, “Minimum control effort–based path planning
and nonlinear guidance for autonomous mobile robots,” Int. J. Adv. Robot.
Syst., vol. 15, no. 6, pp. 1–23, 2018.
[23] A. M. Tusset, J. M. Balthazar, R. T. Rocha, M. A. Ribeiro, and W. B.
Lenz, “On suppression of chaotic motion of a nonlinear MEMS oscillator,”
Nonlinear Dyn., vol. 99, no. 1, pp. 537–557, 2020.
[24] M. Navabi, A. Davoodi, and M. Reyhanoglu, “Optimum fuzzy sliding
mode control of fuel sloshing in a spacecraft using PSO algorithm,” Acta
Astronaut., vol. 167, pp. 331–342, 2020.
[25] A. Bavarsad, A. Fakharian, and M. B. Menhaj, “Optimal sliding mode controller
for an active transfemoral prosthesis using state-dependent Riccati
equation approach,” Arab. J. Sci. Eng., vol. 45, no. 8, pp. 6559–6572, 2020.
[26] M. Asgari and H. N. Foghahayee, “State dependent Riccati equation
(SDRE) controller design for moving obstacle avoidance in mobile robot,”
SN Appl. Sci., vol. 2, no. 11, pp. 1–29, 2020.
[27] P. Zhang, Y. Yuan, L. Guo, and H. Liu, “Near-optimal control for timevarying
linear discrete systems with additive nonlinearities and random
gains,” IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2968–2975, 2019.
[28] M. J. Grimble and P. Majecki, Nonlinear Industrial Control Systems. London,
UK: Springer, 2020.
[29] B. Qin, H. Sun, J. Ma, W. Li, T. Ding, Z. Wang, and A. Y. Zomaya, “Robust
H∞ control of doubly fed wind generator via state-dependent Riccati
equation technique,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2390–
2400, 2019.
[30] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms and
software for algebraic Riccati equations,” Proc. IEEE, vol. 72, no. 12,
pp. 1746–1754, 1984.
[31] T.-M. Huang, R.-C. Li, and W.-W. Lin, in Structure-Preserving Doubling
Algorithms for Nonlinear Matrix Equations, ser Fundamentals of
Algorithms, vol. 14. SIAM, 2018.
[32] P. Benner, Z. Bujanovic, P. Kurschner, and J. Saak, “A numerical comparison
of different solvers for large-scale, continuous-time algebraic Riccati
equations and LQR problems,” SIAM J. Sci. Comput., vol. 42, no. 2,
pp. A957–A996, 2020.
[33] C.-T. Chen, Linear System Theory and Design. NY, USA: Holt, Rinehart
and Winston, 2nd ed., 1984.
[34] T. Çimen, “Systematic and effective design of nonlinear feedback controllers
via the state-dependent Riccati equation (SDRE) method,” Annu.
Rev. Control, vol. 34, no. 1, pp. 32–51, 2010.
[35] L.-G. Lin, J. Vandewalle, and Y.-W. Liang, “Analytical representation of
the state-dependent coefficients in the SDRE/SDDRE scheme for multivariable
systems,” Automatica, vol. 59, pp. 106–111, 2015.
[36] C. Lian, F. Xiao, S. Gao, and J. Liu, “Load torque and moment of inertia
identification for permanent magnet synchronous motor drives based
on sliding mode observer,” IEEE Trans. Power Electron., vol. 34, no. 6,
pp. 5675–5683, 2019.
[37] S. R. Nekoo, “Digital implementation of a continuous-time nonlinear optimal
controller: An experimental study with real-time computations,” ISA
Trans., vol. 101, pp. 346–357, 2020.
[38] F. Topputo, M. Miani, and F. Bernelli-Zazzera, “Optimal selection of the
coefficient matrix in state-dependent control methods,” J. Guid. Control
Dyn., vol. 38, no. 5, pp. 861–873, 2015.
[39] Y. Batmani and S. Najafi, “Event-triggered H∞ depth control of remotely
operated underwater vehicles,” IEEE Trans. Syst. Man, and Cybern. Syst.,
vol. 51, no. 2, pp. 1224–1232, 2021.
[40] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. NJ,
USA: Prentice Hall, 1996.
[41] C. Wang, W. Dong, J. Wang, and J. Shan, “Nonlinear suboptimal guidance
law with impact angle constraint: An SDRE-based approach,” IEEE Trans.
Aerosp. and Electron. Syst., vol. 56, no. 6, pp. 4831–4840, 2020.
[42] P. Van Dooren, “The generalized eigenstructure problem in linear system
theory,” IEEE Trans. Autom. Control, vol. 26, no. 1, pp. 111–129, 1981.
[43] H. Liu, T. Ma, F. L. Lewis, and K. P. Valavanis, “Robust time-varying formation
control for a set of quad-copters with switching interaction communication
topology,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 6880–
6890, 2020.
[44] L. Chen, H. Xu, and X. Sun, “A novel strategy of control performance improvement
for six-phase permanent magnet synchronous hub motor drives
of EVs under new European driving cycle,” IEEE Trans. Veh. Technol.,
vol. 70, no. 6, pp. 5628–5637, 2021.
[45] T. Shi, Y. Yan, Z. Zhou, M. Xiao, and C. Xia, “Linear quadratic regulator
control for PMSM drive systems using nonlinear disturbance observer,”
IEEE Trans. Power Electron., vol. 35, no. 5, pp. 5093–5101, 2020.
[46] Y. Huang and Y. Jia, “Nonlinear robust H∞ control for spacecraft bodyfixed
hovering around noncooperative target via modified θ – D method,”
IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 5, pp. 2451–2463, 2019.
[47] D. Li and L. Du, “AUV trajectory tracking models and control strategies:
A review,” J. Mar. Sci. Eng., vol. 9, no. 9, p. 1020, 2021.
[48] A. Razi, “Optimal measurement policy for linear measurement systems
with applications to UAV network topology prediction,” IEEE Trans.Veh.
Technol., vol. 69, no. 2, pp. 1970–1981, 2020.
[49] J. Liang, Y. Lu, G. Yin, Z. Fang, W. Zhuang, Y. Ren, L. Xu, and Y. Li, “A
distributed integrated control architecture of AFS and DYC based on MAS
for distributed drive electric vehicles,” IEEE Trans. Veh. Technol., vol. 70,
pp. 5565–5577, 2021.
指導教授 林立岡 審核日期 2022-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明