博碩士論文 108327032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:44.200.77.92
姓名 杜星旻(Hsing-Min Tu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 波前檢測應用於氣體折射率量測
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 多重曲率之聚光元件應用於聚光型太陽能電池系統
★ 太陽光模擬系統之設計與製作★ 有機發光二極體熱特性模擬研究
★ 有機發光二極體激子光電特性模擬研究★ 太陽光與固態照明自動化混光技術研究
★ 高分子光柵應用於太陽光分光元件★ 利用色差分光之太陽能分光系統
★ 有機發光二極體光熱電特性整合模擬之研究★ 隨機奈米粒子模型應用於OLED 出光增益之研究
★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究★ 陰影疊紋式力-位移量測技術之研究
★ 繞射分波元件於混合型太陽能系統之應用★ 可撓式白光有機發光二極體光雪與色彩分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出一應用Shack-Hartmann波前檢測儀之稜鏡式氣體折射率量測系統,光路中設置三角稜鏡,稜鏡會直接接觸待測氣體,使光路因折射率不同而產生偏折,並且可以依照待測氣體之折射率範圍挑選其適合之稜鏡。根據本文所使用之光路系統,及Shack-Hartmann波前檢測架構,搭配廣泛運用於波前檢測中之澤爾尼克(Zernike Polynomials)多項式,可推算得該氣體折射率。相比於一般量測稜鏡偏轉角之氣體折射率量測系統,藉由Shack-Hartmann波前檢測儀之微透鏡陣列,可以使取樣更多且更精確地取得偏轉角及氣體折射率。
摘要(英) The refractive index of gas plays an important part in a lot of industries. For example, determining the refractive index of gas can analyze the compound in the environment. A lot of techniques had been developed to measure the refractive indexes of gases, such as interferometry. The deviation angle of the prism is also widely used in sensing of refractive index of gas.
A Shack-Hartmann wavefront sensor is formerly known as a Hartmann wavefront sensor. It is applied to detect the aberrations of the optical lens. The aberrations of a lens can be translated into point spread function (PSF) which can also be translated into modulated transfer function (MTF) to analyze the property of the lens. The accuracy of a Shack-Hartmann wavefront sensor is restricted by the lenslet array. In recent years, with the great improvement of the process of the lenslet array, the sensitivity of Shack-Hartmann wavefront sensor was also improved.
In this research, we present a new system for measuring the refractive index of gas. The system combines with a prism to measure the refraction by the deviation angle. A Shack-Hartmann wavefront sensor is also used in this system to analyze the wavefront change resulting from the different refractive indexes.
關鍵字(中) ★ Shack-Hartmann波前檢測儀
★ 稜鏡
★ Zernike Polynomials
★ 氣體折射率
關鍵字(英) ★ Shack-Hartmann wavefront sensor
★ Prism
★ Zernike Polynomials
★ Refractive index of gas
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究目的與方法 5
1.4 論文架構 7
第2章 原理 8
2.1 波前與光程差 8
2.2 像差 8
2.2.1 球面像差 9
2.2.2 彗差 10
2.2.3 像散 11
2.2.4 場曲 12
2.2.5 畸變 12
2.3 Zernike多項式 12
2.4 Shack-Hartmann波前檢測儀原理 14
2.4.1 量測原理 14
2.4.2 波前重建 16
2.4.3 重心法 17
2.4.4 動態範圍及靈敏度 17
2.5 剪切干涉原理(Lateral Shearing Interferometry) 18
2.6 偏振 20
2.7 直角稜鏡量測氣體折射率原理 21
第3章 光學模擬與實驗架構 23
3.1 波前模擬 23
3.2 氣體折射率量測儀架構 24
3.2.1 氣體折射率量測儀之系統架構 24
3.2.2 氣體折射率量測儀之光學模擬 28
3.3 系統元件 29
3.3.1 綠光雷射 30
3.3.2 衰減片 31
3.3.3 空間濾波器 32
3.3.4 準直透鏡 33
3.3.5 波前感測器 33
3.4 系統驗證 35
3.4.1 平面波驗證 35
3.4.2 偏振態 36
第4章 實驗結果與討論 38
4.1 實驗流程 38
4.2 環境空氣折射率量測 40
4.3 氮氣折射率量測 41
4.4 誤差分析 42
4.4.1 正切函數線性討論 42
4.4.2 玻璃變形 43
4.4.3 理論誤差 46
4.5 系統穩定性分析 48
4.6 焦點位移量分析 49
4.6.1 空間域焦點位移量分析 49
4.6.2 單透鏡焦點位移量分析 51
4.7 系統解析度 52
第5章 結論與未來展望 54
5.1 結論 54
5.2 未來展望 54
參考文獻 56
參考文獻 [1] J. W. Hardy, "Adaptive optics for astronomical telescopes", Oxford University Press on Demand, 1998.
[2] B. C. Platt and R. Shack, "History and Principles of Shack-Hartmann Wavefront Sensing", Journal of Refractive Surgery, 17, 2001.
[3] D. R. Neal, J. Copland, and D. A. Neal, "Shack-Hartmann wavefront sensor precision and accuracy", International Society for Optics and Photonics, 4779, 2002.
[4] D. Malacara, "Optical shop testing", John Wiley & Sons, 2007.
[5] B. M. Welsh, B. L. Ellerbroek, M. C. Roggemann, and T. L. Pennington, "Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor", Applied optics, 34, 1995.
[6] L. Seifert, J. Liesener, and H. J. Tiziani, "The adaptive Shack–Hartmann senso", Optics Communications, 216, 2003.
[7] C. Schwarz, O. Hüter, and T. Brixner, "Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup", J. Opt. Soc. Am. B, 32, 2015.
[8] M. Ninck, A. Galler, T. Feurer, and T. Brixner, "Programmable common-path vector field synthesizer for femtosecond pulses", Opt. Lett., 32, 2007.
[9] H. Gebbie and N. Stone, "A Michelson interferometer for far infrared spectroscopy of gases", Infrared physics, 4, 1964.
[10] G. Xiao, A. Adnet, Z. Zhang, F. Sun, and C. Grover, "Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor", Sensors and Actuators A Physical, 118, 2005.
[11] M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, "Independent control over the amplitude, phase, and polarization of femtosecond pulses", Applied Physics B, 86, 2007.
[12] Z. A. Zaky, A. M. Ahmed, A. S. Shalaby, and A. H. Aly, "Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation", Scientific Reports, 10, 2020.
[13] P. M. C. Rourke et al., "Refractive-index gas thermometry", Metrologia, 56, 2019.
[14] N. Fabricius, G. Gauglitz, and J. Ingenhoff, "A gas sensor based on an integrated optical Mach-Zehnder interferometer", Sensors and Actuators B: Chemical, 7, 1992.
[15] P. W. Smith, "A Waveguide Gas Laser", Applied Physics Letters, 19, 1971.
[16] M. Ibadul Islam et al., "Design of single mode spiral photonic crystal fiber for gas sensing applications", Sensing and Bio-Sensing Research, 13, 2017.
[17] J. Chamberlain, F. Findlay, and H. Gebbie, "The measurement of the refractive index spectrum of HCl gas in the near infrared using a Michelson interferometer", Applied Optics, 4, 1965.
[18] R. Pan et al., "All-Fiber Fabry-Perot Interferometer Gas Refractive Index Sensor Based on Hole-Assisted One-Core Fiber and Vernier Effect", IEEE Sensors Journal, 21, 2021.
[19] H. B. Chae, J. W. Schmidt, and M. R. Moldover, "Alternative refrigerants R123a, R134, R141b, R142b, and R152a: critical temperature, refractive index, surface tension, and estimates of liquid, vapor, and critical densities", Journal of Physical Chemistry, 94, 1990.
[20] J. W. Schmidt and M. R. Moldover, "Alternative Refrigerants Ch2F2 and C2Hf5-Critical-Temperature, Refractive-Index, Surface-Tension, and Estimates of Liquid, Vapor, and Critical Densities", Journal of Chemical and Engineering Data, 39, 1994.
[21] J. Yata, M. Hori, H. Kawakatsu, and T. Minamiyama, "Measurements of the refractive index of alternative refrigerants", International journal of thermophysics, 17, 1996.
[22] U. Gubler and C. Bosshard, "Optical third-harmonic generation of fused silica in gas atmosphere: Absolute value of the third-order nonlinear optical susceptibility", Physical Review B, 61, 2000.
[23] H. J. Lehmeier, W. Leupacher, and A. Penzkofer, "Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation", Optics Communications, 56, 1985.
[24] J. F. Ward and G. H. C. New, "Optical Third Harmonic Generation in Gases by a Focused Laser Beam", Physical Review, 185, 1969.
[25] D. P. Shelton, "Nonlinear-optical susceptibilities of gases measured at 1064 and 1319 nm", Physical Review A, 42, 1990.
[26] S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, "Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths", Opt. Lett., 40, 2015.
[27] J.-F. Ripoche et al., "Determination of the time dependence of n2 in air", Optics Communications, 135, 1997.
[28] E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, and A. Mysyrowicz, "Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses", J. Opt. Soc. Am. B, 14, 1997.
[29] K. Birch and M. Downs, "An updated Edlén equation for the refractive index of air", Metrologia, 30, 1993.
[30] O. Kruger and N. Chetty, "Robust air refractometer for accurate compensation of the refractive index of air in everyday use", Applied Optics, 55, 2016.
[31] Online resources : ThorLabs, "Spatial Filters Tutorial," ed.
[32] A. C. Simmons, "The refractive index and Lorentz-Lorenz functions of propane, nitrogen and carbon-dioxide in the spectral range 15803–22002 cm−1 and at 944 cm−1", Optics Communications, 25, 1978.
[33] Y. Clergent, C. Durou, and M. Laurens, "Refractive Index Variations for Argon, Nitrogen, and Carbon Dioxide at λ = 632.8 nm (He−Ne Laser Light) in the Range 288.15 K ≤ T ≤ 323.15 K, 0 < p < 110 kPa", Journal of Chemical & Engineering Data, 44, 1999.
指導教授 韋安琪(An-Chi Wei) 審核日期 2022-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明