博碩士論文 108328014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:13.59.218.147
姓名 辛昱諭(Yu-Yu Sin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
(The study on the solid state lubrication of ultra-high adhesion fluorinated graphene film)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氟化石墨烯近年來憑藉其二維材料特有片層滑移系統及其更低之表面能(C-F鍵),成為固態磨潤領域的高潛力材料。然而其在應用上仍有許多瓶頸急需要解決。傳統製程高毒性、汙染及氟化率不均問題使其目前仍難以達到工業上的均質及量產需求,此外這類二維材料在塗佈時的低附著性瓶頸更大幅限制了其實際應用。本研究將介紹一種以含氟高分子為前驅物之綠色製程於量產氟化石墨烯,相較於過去習用製程更為安全環保且產物更為均質穩定並符合量產製程所需。此外利用電泳沉積法製備具有高附著力和膜厚可控性之氟化石墨烯固態磨潤塗層,其厚度可簡單透過調整如施加電壓或是電泳時間控制於0.2至2.5 μm之間。研究發現透過電泳沉積法形成之新型態鍵結CF-Cu以及CF-Cu-FC鍵結可大幅提升氟化石墨烯與金屬底材之附著力,於刮痕測試中,其臨界荷重可達23.81 N遠大於一般刮塗之1.92 N。而在磨耗特性分析上,氟化石墨烯塗層可使銅基板之摩擦係數由0.77降低至0.26,且其壽命可達929 圈,並能有效降低磨耗率達35%。此外,此技術亦可延伸並應用於其他常見的工業金屬基板如鋁鎂合金以及碳鋼上,並發現其亦可分別降低磨耗率達50以及90%。本研究亦展示了此方法在時效性、熱穩定性以及複雜工件表面塗佈等方面之潛力。憑藉著符合工業需求之製程技術以及展現高抗磨耗之效能,本研究展示了新材料於固態磨潤的一種極具未來潛力的解決策略。
摘要(英) With the unique interlayer sliding system and their extremely low surface free energy (C-F bonding), the fluorinated graphene (FG) became a potential 2D material in the research of solid lubricant. However, to become an industry product there are still some urgent issues that need to be solved. The toxic, high pollution chemicals and unstable fluorination degree of FG by the typical methods hinders their industry demand like the uniform mass production. In addition, the low adhesion issue in the 2D material coating seriously limited its practical applications. In this report, low pollution with high yield fabrication method of FG is introduced by using a high fluorine-based polymer as the precursor, which exhibited a higher safety and better product uniformity when compared to the traditional fluorinated method that enabled the request of mass production in industry application. In addition, by using the electrophoretic deposition method (EPD), an ultrahigh adhesion with a thickness controllable (0.2 to 2.5 μm) was achieved. With the formation of the unique CF-Cu and CF-Cu-FC bonding during the deposition process, the adhesion of FG film is highly improved, where the critical loading is up to 23.81 N which was much higher than FG coating prepared by print coating (1.92 N) in scratch testing. The as-prepared FG solid lubricant film on Cu substrate successfully decreases the coefficient of friction (CoF) from 0.77 to 0.26 with a long lifetime of up to 929 cycles and a decreasing wear rate by 35%. Also, the frequently used substrates such as aluminum-magnesium alloy and carbon steel were tested, where a decrease in wear rate by 50 and 90% were obtained, respectively. In this study, FG coating showed high stability while the EPD method exhibits the feasibility of deposition on complex surface substrates with high uniformity, which provides a new strategy to prepare a robust and high-performance solid lubricant film.
關鍵字(中) ★ 氟化石墨烯
★ 電泳沉積法
★ 強附著力二維材料薄膜
★ 固態磨潤
關鍵字(英) ★ Fluorinated graphene
★ Electrophoretic deposition
★ Strong adhesion 2D material film
★ Solid state lubrication.
論文目次 摘要 I
Abstract VI
誌謝 VII
總目錄 VIII
圖目錄 X
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 固態磨潤 2
第二章 研究背景與文獻回顧 4
2-1 石墨烯材料於磨潤應用之研究 4
2-2 氟化石墨烯於磨潤應用之研究 8
2-3 氟化石墨烯之製備方法 10
2-4 二維材料塗層低附著力問題 14
2-5 實驗動機 17
第三章 實驗方法與步驟 19
3-1 實驗方法 19
3-2 氟化石墨烯合成製備 20
3-3 氟化石墨烯特性分析 21
3-4 電泳氟化石墨烯固態磨潤薄膜 21
3-5 電泳氟化石墨烯塗層性質分析 22
3-6 磨潤特性分析 23
第四章 結果與討論 24
4-1 水熱法置備之氟化石墨烯性質分析 24
4-1-1 水熱製程中前驅物添加量對氟化石墨烯產物特性之影響 25
4-1-2 氟化石墨烯產物化學特性分析 27
4-1-3 氟化石墨烯產物片層結構特性分析 29
4-2 電泳氟化石墨烯塗層性質分析 31
4-2-1 電泳塗佈製程中電泳液中氟化石墨烯濃度對於沉積塗層品質之影響 31
4-2-2 電泳塗佈製程中電泳液分散劑對於沉積塗層品質之影響 32
4-2-3 電泳施加電壓以及沉積時間對於沉積塗層結構之影響 34
4-2-4 電泳沉積時間對於沉積塗層化學特性之影響 37
4-2-5 電泳沉積氟化石墨烯塗層之附著力分析 41
4-3 電泳氟化石墨烯塗層磨潤特性分析 50
4-3-1 氟化石墨烯固態磨潤塗層之摩擦係數分析 50
4-3-2 氟化石墨烯固態磨潤塗層之磨耗分析 54
4-4 電泳氟化石墨烯塗層於其他種類基板上之磨潤特性分析 56
4-4-1 氟化石墨烯固態磨潤塗層於鋁鎂合金上之磨潤特性分析 56
4-4-2 氟化石墨烯固態磨潤塗層於碳鋼上之磨潤特性分析 58
4-5 電泳氟化石墨烯固態磨潤塗層之穩定性評估 63
4-6 電泳氟化石墨烯固態磨潤塗層於複雜基板之塗佈 64
第五章 結論 65
第六章 未來工作 66
參考文獻 68
參考文獻 [1] Holmberg, K., P. Andersson, and A. Erdemir, "Global Energy Consumption Due to Friction in Passenger Cars". Tribology international, Vol. 47, pp. 221-234, 2012.
[2] Voevodin, A.A., C. Muratore, and S.M. Aouadi, "Hard Coatings with High Temperature Adaptive Lubrication and Contact Thermal Management". Surface and Coatings Technology, Vol. 257, pp. 247-265, 2014.
[3] Chen, W., Y. Yu, X. Sui, S. Zhu, G. Huang, and J. Yang, "Tribological Behavior of the Low-Pressure Cold Sprayed (Cu-5sn)/Al2o3-Ag Solid-Lubricating Coating in Artificial Seawater". Surface and Coatings Technology, Vol. 403, pp. 126359, 2020.
[4] Ouyang, J., S. Sasaki, T. Murakami, and K. Umeda, "The Synergistic Effects of Caf2 and Au Lubricants on Tribological Properties of Spark-Plasma-Sintered Zro2 (Y2o3) Matrix Composites". Materials Science and Engineering: A, Vol. 386, no. 1-2, pp. 234-243, 2004.
[5] Essa, F., Q. Zhang, X. Huang, M.K.A. Ali, A. Elagouz, and M.A. Abdelkareem, "Effects of Zno and Mos 2 Solid Lubricants on Mechanical and Tribological Properties of M50-Steel-Based Composites at High Temperatures: Experimental and Simulation Study". Tribology Letters, Vol. 65, no. 3, pp. 1-29, 2017.
[6] Jiang, Z., Y. Zhang, G. Yang, C. Gao, L. Yu, S. Zhang, and P. Zhang, "Synthesis of Oil-Soluble Ws2 Nanosheets under Mild Condition and Study of Their Effect on Tribological Properties of Poly-Alpha Olefin under Evaluated Temperatures". Tribology International, Vol. 138, pp. 68-78, 2019.
[7] Erdemir, A., "A Crystal-Chemical Approach to Lubrication by Solid Oxides". Tribology Letters, Vol. 8, no. 2, pp. 97-102, 2000.
[8] Stone, D., J. Liu, D.P. Singh, C. Muratore, A.A. Voevodin, S. Mishra, C. Rebholz, Q. Ge, and S.M. Aouadi, "Layered Atomic Structures of Double Oxides for Low Shear Strength at High Temperatures". Scripta Materialia, Vol. 62, no. 10, pp. 735-738, 2010.
[9] Mazumder, S., H.S.C. Metselaar, N.L. Sukiman, and N.W.M. Zulkifli, "An Overview of Fluoride-Based Solid Lubricants in Sliding Contacts". Journal of the European Ceramic Society, Vol. 40, no. 15, pp. 4974-4996, 2020.
[10] Kotkowiak, M., A. Piasecki, and M. Kulka, "The Influence of Solid Lubricant on Tribological Properties of Sintered Ni–20% Caf2 Composite Material". Ceramics International, Vol. 45, no. 14, pp. 17103-17113, 2019.
[11] Mazumder, S., B.B. Barad, B.K. Show, and N. Mandal, "Tribological Property Enhancement of 3y-Tzp Ceramic by the Combined Effect of Caf2 and Mgo Phases". Ceramics International, Vol. 45, no. 10, pp. 13447-13455, 2019.
[12] Nunez, E.E., R. Gheisari, and A.A. Polycarpou, "Tribology Review of Blended Bulk Polymers and Their Coatings for High-Load Bearing Applications". Tribology International, Vol. 129, pp. 92-111, 2019.
[13] Lv, Y., W. Wang, G. Xie, and J. Luo, "Self-Lubricating Ptfe-Based Composites with Black Phosphorus Nanosheets". Tribology Letters, Vol. 66, no. 2, pp. 1-11, 2018.
[14] Sawyer, W.G., K.D. Freudenberg, P. Bhimaraj, and L.S. Schadler, "A Study on the Friction and Wear Behavior of Ptfe Filled with Alumina Nanoparticles". Wear, Vol. 254, no. 5-6, pp. 573-580, 2003.
[15] Gong, H., C. Yu, L. Zhang, G. Xie, D. Guo, and J. Luo, "Intelligent Lubricating Materials: A Review". Composites Part B: Engineering, pp. 108450, 2020.
[16] Song, H., L. Ji, H. Li, J. Wang, X. Liu, H. Zhou, and J. Chen, "Self-Forming Oriented Layer Slip and Macroscale Super-Low Friction of Graphene". Applied Physics Letters, Vol. 110, no. 7, pp. 073101, 2017.
[17] Berman, D., A. Erdemir, and A.V. Sumant, "Graphene: A New Emerging Lubricant". Materials Today, Vol. 17, no. 1, pp. 31-42, 2014.
[18] Dienwiebel, M., N. Pradeep, G.S. Verhoeven, H.W. Zandbergen, and J.W. Frenken, "Model Experiments of Superlubricity of Graphite". Surface Science, Vol. 576, no. 1-3, pp. 197-211, 2005.
[19] Bryant, P., P. Gutshall, and L. Taylor, "A Study of Mechanisms of Graphite Friction and Wear". Wear, Vol. 7, no. 1, pp. 118-126, 1964.
[20] Scharf, T. and S. Prasad, "Solid Lubricants: A Review". Journal of materials science, Vol. 48, no. 2, pp. 511-531, 2013.
[21] Prasad, S. and J. Zabinski, "Tribology of Tungsten Disulphide (Ws2). Characterization of Wear-Induced Transfer Films". Journal of materials science letters, Vol. 12, no. 18, pp. 1413-1415, 1993.
[22] Prasad, S., J. Zabinski, and N. McDevitt, "Friction Behavior of Pulsed Laser Deposited Tungsten Disulfide Films". Tribology transactions, Vol. 38, no. 1, pp. 57-62, 1995.
[23] Zabinski, J., M. Donley, S. Prasad, and N. McDevitt, "Synthesis and Characterization of Tungsten Disulphide Films Grown by Pulsed-Laser Deposition". Journal of materials science, Vol. 29, no. 18, pp. 4834-4839, 1994.
[24] Scharf, T., J. Ohlhausen, D. Tallant, and S. Prasad, "Mechanisms of Friction in Diamondlike Nanocomposite Coatings". Journal of Applied Physics, Vol. 101, no. 6, pp. 063521, 2007.
[25] Hou, K., P. Gong, J. Wang, Z. Yang, Z. Wang, and S. Yang, "Structural and Tribological Characterization of Fluorinated Graphene with Various Fluorine Contents Prepared by Liquid-Phase Exfoliation". RSC Advances, Vol. 4, no. 100, pp. 56543-56551, 2014.
[26] Fan, K., X. Chen, X. Wang, X. Liu, Y. Liu, W. Lai, and X. Liu, "Toward Excellent Tribological Performance as Oil-Based Lubricant Additive: Particular Tribological Behavior of Fluorinated Graphene". ACS applied materials & interfaces, Vol. 10, no. 34, pp. 28828-28838, 2018.
[27] Ye, X., L. Ma, Z. Yang, J. Wang, H. Wang, and S. Yang, "Covalent Functionalization of Fluorinated Graphene and Subsequent Application as Water-Based Lubricant Additive". ACS applied materials & interfaces, Vol. 8, no. 11, pp. 7483-7488, 2016.
[28] Fan, K., X. Liu, Y. Liu, Y. Li, Y. Chen, Y. Meng, X. Liu, W. Feng, and L. Luo, "Covalent Functionalization of Fluorinated Graphene through Activation of Dormant Radicals for Water-Based Lubricants". Carbon, Vol. 167, pp. 826-834, 2020.
[29] Ci, X., W. Zhao, J. Luo, Y. Wu, T. Ge, Q. Xue, X. Gao, and Z. Fang, "How the Fluorographene Replaced Graphene as Nanoadditive for Improving Tribological Performances of Gtl-8 Based Lubricant Oil". Friction, Vol. 9, pp. 488-501, 2021.
[30] Matsumura, K., S. Chiashi, S. Maruyama, and J. Choi, "Macroscale Tribological Properties of Fluorinated Graphene". Applied Surface Science, Vol. 432, pp. 190-195, 2018.
[31] Fan, K., J. Fu, X. Liu, Y. Liu, W. Lai, X. Liu, and X. Wang, "Dependence of the Fluorination Intercalation of Graphene toward High-Quality Fluorinated Graphene Formation". Chemical science, Vol. 10, no. 21, pp. 5546-5555, 2019.
[32] Herraiz, M., M. Dubois, N. Batisse, E. Petit, and P. Thomas, "Exfoliated Fluorinated Carbons with a Low and Stable Friction Coefficient". RSC advances, Vol. 9, no. 24, pp. 13615-13622, 2019.
[33] Novoselov, K.S., A.K. Geim, S.V. Morozov, D.-e. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films". science, Vol. 306, no. 5696, pp. 666-669, 2004.
[34] Lin, J., L. Wang, and G. Chen, "Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive". Tribology letters, Vol. 41, no. 1, pp. 209-215, 2011.
[35] Li, Y., Q. Wang, T. Wang, and G. Pan, "Preparation and Tribological Properties of Graphene Oxide/Nitrile Rubber Nanocomposites". Journal of Materials Science, Vol. 47, no. 2, pp. 730-738, 2012.
[36] Berman, D., S.A. Deshmukh, S.K. Sankaranarayanan, A. Erdemir, and A.V. Sumant, "Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer". Advanced Functional Materials, Vol. 24, no. 42, pp. 6640-6646, 2014.
[37] Niyogi, S., E. Bekyarova, M.E. Itkis, J.L. McWilliams, M.A. Hamon, and R.C. Haddon, "Solution Properties of Graphite and Graphene". Journal of the American Chemical Society, Vol. 128, no. 24, pp. 7720-7721, 2006.
[38] Liao, L., H. Peng, and Z. Liu, "Chemistry Makes Graphene Beyond Graphene". Journal of the American chemical society, Vol. 136, no. 35, pp. 12194-12200, 2014.
[39] Liu, Y., J. Li, X. Chen, and J. Luo, "Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments". ACS applied materials & interfaces, Vol. 11, no. 43, pp. 40470-40480, 2019.
[40] Dreyer, D.R., S. Park, C.W. Bielawski, and R.S. Ruoff, "The Chemistry of Graphene Oxide". Chemical society reviews, Vol. 39, no. 1, pp. 228-240, 2010.
[41] Song, H., Z. Wang, J. Yang, X. Jia, and Z. Zhang, "Facile Synthesis of Copper/Polydopamine Functionalized Graphene Oxide Nanocomposites with Enhanced Tribological Performance". Chemical Engineering Journal, Vol. 324, pp. 51-62, 2017.
[42] Dong, Y., X. Wu, and A. Martini, "Atomic Roughness Enhanced Friction on Hydrogenated Graphene". Nanotechnology, Vol. 24, no. 37, pp. 375701, 2013.
[43] Zeng, X., Y. Peng, H. Lang, and L. Liu, "Controllable Nanotribological Properties of Graphene Nanosheets". Scientific reports, Vol. 7, no. 1, pp. 1-13, 2017.
[44] Feng, W., P. Long, Y. Feng, and Y. Li, "Two‐Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications". Advanced Science, Vol. 3, no. 7, pp. 1500413, 2016.
[45] Lee, W.-K., M. Haydell, J.T. Robinson, A.R. Laracuente, E. Cimpoiasu, W.P. King, and P.E. Sheehan, "Nanoscale Reduction of Graphene Fluoride Via Thermochemical Nanolithography". ACS nano, Vol. 7, no. 7, pp. 6219-6224, 2013.
[46] Arif, T., G. Colas, and T. Filleter, "Effect of Humidity and Water Intercalation on the Tribological Behavior of Graphene and Graphene Oxide". ACS applied materials & interfaces, Vol. 10, no. 26, pp. 22537-22544, 2018.
[47] Ahmad, Y., N. Batisse, X. Chen, and M. Dubois, "Preparation and Applications of Fluorinated Graphenes". C, Vol. 7, no. 1, pp. 20, 2021.
[48] Ko, J.-H., S. Kwon, I.-S. Byun, J.S. Choi, B.H. Park, Y.-H. Kim, and J.Y. Park, "Nanotribological Properties of Fluorinated, Hydrogenated, and Oxidized Graphenes". Tribology Letters, Vol. 50, no. 2, pp. 137-144, 2013.
[49] Jeon, K.-J., Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C.-M. Park, R. Mendelsberg, V. Radmilovic, R. Kostecki, and T.J.J.A.N. Richardson, "Fluorographene: A Wide Bandgap Semiconductor with Ultraviolet Luminescence". Vol. 5, no. 2, pp. 1042-1046, 2011.
[50] Yu, X., K. Lin, K. Qiu, H. Cai, X. Li, J. Liu, N. Pan, S. Fu, Y. Luo, and X.J.C. Wang, "Increased Chemical Enhancement of Raman Spectra for Molecules Adsorbed on Fluorinated Reduced Graphene Oxide". Vol. 50, no. 12, pp. 4512-4517, 2012.
[51] Tahara, K., T. Iwasaki, A. Matsutani, and M.J.A.P.L. Hatano, "Effect of Radical Fluorination on Mono-and Bi-Layer Graphene in Ar/F2 Plasma". Vol. 101, no. 16, pp. 163105, 2012.
[52] Gong, P., Z. Wang, J. Wang, H. Wang, Z. Li, Z. Fan, Y. Xu, X. Han, and S.J.J.o.M.C. Yang, "One-Pot Sonochemical Preparation of Fluorographene and Selective Tuning of Its Fluorine Coverage". Vol. 22, no. 33, pp. 16950-16956, 2012.
[53] Sun, C., Y. Feng, Y. Li, C. Qin, Q. Zhang, and W.J.N. Feng, "Solvothermally Exfoliated Fluorographene for High-Performance Lithium Primary Batteries". Vol. 6, no. 5, pp. 2634-2641, 2014.
[54] Wang, Z., J. Wang, Z. Li, P. Gong, X. Liu, L. Zhang, J. Ren, H. Wang, and S.J.C. Yang, "Synthesis of Fluorinated Graphene with Tunable Degree of Fluorination". Vol. 50, no. 15, pp. 5403-5410, 2012.
[55] Samanta, K., S. Some, Y. Kim, Y. Yoon, M. Min, S.M. Lee, Y. Park, and H.J.C.C. Lee, "Highly Hydrophilic and Insulating Fluorinated Reduced Graphene Oxide". Vol. 49, no. 79, pp. 8991-8993, 2013.
[56] Das, S., D. Lahiri, D.-Y. Lee, A. Agarwal, and W. Choi, "Measurements of the Adhesion Energy of Graphene to Metallic Substrates". Carbon, Vol. 59, pp. 121-129, 2013.
[57] Yoon, T., W.C. Shin, T.Y. Kim, J.H. Mun, T.-S. Kim, and B.J. Cho, "Direct Measurement of Adhesion Energy of Monolayer Graphene as-Grown on Copper and Its Application to Renewable Transfer Process". Nano letters, Vol. 12, no. 3, pp. 1448-1452, 2012.
[58] Li, Y.Q., T. Yu, T.Y. Yang, L.X. Zheng, and K. Liao, "Bio‐Inspired Nacre‐Like Composite Films Based on Graphene with Superior Mechanical, Electrical, and Biocompatible Properties". Advanced Materials, Vol. 24, no. 25, pp. 3426-3431, 2012.
[59] Putz, K.W., O.C. Compton, M.J. Palmeri, S.T. Nguyen, and L.C. Brinson, "High‐Nanofiller‐Content Graphene Oxide–Polymer Nanocomposites Via Vacuum‐Assisted Self‐Assembly". Advanced Functional Materials, Vol. 20, no. 19, pp. 3322-3329, 2010.
[60] Gao, Y., L.-Q. Liu, S.-Z. Zu, K. Peng, D. Zhou, B.-H. Han, and Z. Zhang, "The Effect of Interlayer Adhesion on the Mechanical Behaviors of Macroscopic Graphene Oxide Papers". ACS nano, Vol. 5, no. 3, pp. 2134-2141, 2011.
[61] Flouda, P., S.A. Shah, D.C. Lagoudas, M.J. Green, and J.L. Lutkenhaus, "Highly Multifunctional Dopamine-Functionalized Reduced Graphene Oxide Supercapacitors". Matter, Vol. 1, no. 6, pp. 1532-1546, 2019.
[62] Cui, W., M. Li, J. Liu, B. Wang, C. Zhang, L. Jiang, and Q. Cheng, "A Strong Integrated Strength and Toughness Artificial Nacre Based on Dopamine Cross-Linked Graphene Oxide". ACS nano, Vol. 8, no. 9, pp. 9511-9517, 2014.
[63] Xu, H., J. Zang, Y. Yuan, P. Tian, and Y. Wang, "Preparation of Multilayer Graphene Coatings with Interfacial Bond to Mild Steel Via Covalent Bonding for High Performance Anticorrosion and Wear Resistance". Carbon, Vol. 154, pp. 156-168, 2019.
[64] Liu, Y., C. Liang, A. Wei, Y. Jiang, Q. Tian, Y. Wu, Z. Xu, Y. Li, F. Guo, and Q. Yang, "Solder-Free Electrical Joule Welding of Macroscopic Graphene Assemblies". Materials Today Nano, Vol. 3, pp. 1-8, 2018.
[65] Sreepal, V., M. Yagmurcukardes, K.S. Vasu, D.J. Kelly, S.F. Taylor, V.G. Kravets, Z. Kudrynskyi, Z.D. Kovalyuk, A. Patanè, and A.N. Grigorenko, "Two-Dimensional Covalent Crystals by Chemical Conversion of Thin Van Der Waals Materials". Nano letters, Vol. 19, no. 9, pp. 6475-6481, 2019.
[66] Chernozatonskii, L.A., P.B. Sorokin, A.G.e. Kvashnin, and D.G.e. Kvashnin, "Diamond-Like C 2 H Nanolayer, Diamane: Simulation of the Structure and Properties". Jetp Letters, Vol. 90, no. 2, pp. 134-138, 2009.
[67] Ribas, M.A., A.K. Singh, P.B. Sorokin, and B.I. Yakobson, "Patterning Nanoroads and Quantum Dots on Fluorinated Graphene". nano Research, Vol. 4, no. 1, pp. 143-152, 2011.
[68] Barboza, A.P., M.H. Guimaraes, D.V. Massote, L.C. Campos, N.M. Barbosa Neto, L.G. Cancado, R.G. Lacerda, H. Chacham, M.S. Mazzoni, and B.R. Neves, "Room‐Temperature Compression‐Induced Diamondization of Few‐Layer Graphene". Advanced Materials, Vol. 23, no. 27, pp. 3014-3017, 2011.
[69] Odkhuu, D., D. Shin, R.S. Ruoff, and N. Park, "Conversion of Multilayer Graphene into Continuous Ultrathin Sp 3-Bonded Carbon Films on Metal Surfaces". Scientific Reports, Vol. 3, no. 1, pp. 1-7, 2013.
[70] Kvashnin, A.G., L.A. Chernozatonskii, B.I. Yakobson, and P.B. Sorokin, "Phase Diagram of Quasi-Two-Dimensional Carbon, from Graphene to Diamond". Nano letters, Vol. 14, no. 2, pp. 676-681, 2014.
[71] Bakharev, P.V., M. Huang, M. Saxena, S.W. Lee, S.H. Joo, S.O. Park, J. Dong, D.C. Camacho-Mojica, S. Jin, and Y. Kwon, "Chemically Induced Transformation of Chemical Vapour Deposition Grown Bilayer Graphene into Fluorinated Single-Layer Diamond". Nature nanotechnology, Vol. 15, no. 1, pp. 59-66, 2020.
[72] Gao, Y., T. Cao, F. Cellini, C. Berger, W.A. De Heer, E. Tosatti, E. Riedo, and A. Bongiorno, "Ultrahard Carbon Film from Epitaxial Two-Layer Graphene". Nature nanotechnology, Vol. 13, no. 2, pp. 133-138, 2018.
[73] Martins, L.G.P., M.J. Matos, A.R. Paschoal, P.T. Freire, N.F. Andrade, A.L. Aguiar, J. Kong, B.R. Neves, A.B. de Oliveira, and M.S. Mazzoni, "Raman Evidence for Pressure-Induced Formation of Diamondene". Nature communications, Vol. 8, no. 1, pp. 1-9, 2017.
[74] Su, C.-Y., Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C.-H. Tsai, Y. Huang, and L.-J. Li, "Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors". ACS nano, Vol. 4, no. 9, pp. 5285-5292, 2010.
[75] Su, C.-Y., Y. Xu, W. Zhang, J. Zhao, X. Tang, C.-H. Tsai, and L.-J. Li, "Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers". Chemistry of Materials, Vol. 21, no. 23, pp. 5674-5680, 2009.
[76] Krishnamoorthy, K., M. Veerapandian, K. Yun, and S.-J. Kim, "The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation". Carbon, Vol. 53, pp. 38-49, 2013.
[77] Wang, Z., J. Wang, Z. Li, P. Gong, X. Liu, L. Zhang, J. Ren, H. Wang, and S. Yang, "Synthesis of Fluorinated Graphene with Tunable Degree of Fluorination". Carbon, Vol. 50, no. 15, pp. 5403-5410, 2012.
[78] Ho, K.I., J.H. Liao, C.H. Huang, C.L. Hsu, W. Zhang, A.Y. Lu, L.J. Li, C.S. Lai, and C.Y. Su, "One‐Step Formation of a Single Atomic‐Layer Transistor by the Selective Fluorination of a Graphene Film". Small, Vol. 10, no. 5, pp. 989-997, 2014.
[79] Ho, K.-I., C.-H. Huang, J.-H. Liao, W. Zhang, L.-J. Li, C.-S. Lai, and C.-Y. Su, "Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics". Scientific reports, Vol. 4, no. 1, pp. 1-7, 2014.
[80] Ho, K.-I., J.-H. Liao, C.-H. Huang, C.-L. Hsu, L.-J. Li, C.-S. Lai, and C.-Y. Su. One-Step Formation of Atomic-Layered Transistor by Selective Fluorination of Graphene Film. in 2013 IEEE 5th International Nanoelectronics Conference (INEC). 2013. IEEE.
[81] Becerril, H.A., J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, "Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors". ACS nano, Vol. 2, no. 3, pp. 463-470, 2008.
[82] Gong, P., Z. Wang, J. Wang, H. Wang, Z. Li, Z. Fan, Y. Xu, X. Han, and S. Yang, "One-Pot Sonochemical Preparation of Fluorographene and Selective Tuning of Its Fluorine Coverage". Journal of Materials Chemistry, Vol. 22, no. 33, pp. 16950-16956, 2012.
[83] Ou, Y.J., X.M. Wang, C.L. Li, Y.L. Zhu, and X.L. Li. The Effects of Alkali and Temperature on the Hydrolysis Rate of N-Methylpyrrolidone. in IOP Conference Series: Earth and Environmental Science. 2017. IOP Publishing.
[84] Sarkar, P., D. De, and H. Rho, "Synthesis and Microstructural Manipulation of Ceramics by Electrophoretic Deposition". Journal of Materials Science, Vol. 39, no. 3, pp. 819-823, 2004.
[85] Besra, L. and M. Liu, "A Review on Fundamentals and Applications of Electrophoretic Deposition (Epd)". Progress in materials science, Vol. 52, no. 1, pp. 1-61, 2007.
[86] Basu, R.N., C.A. Randall, and M.J. Mayo, "Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition". Journal of the American Ceramic Society, Vol. 84, no. 1, pp. 33-40, 2001.
[87] Su, C.-Y., A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov, and L.-J. Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation". ACS nano, Vol. 5, no. 3, pp. 2332-2339, 2011.
[88] Park, J.H. and J.M. Park, "Electrophoretic Deposition of Graphene Oxide on Mild Carbon Steel for Anti-Corrosion Application". Surface and Coatings Technology, Vol. 254, pp. 167-174, 2014.
[89] Wang, M., L.D. Duong, J.-S. Oh, N.T. Mai, S. Kim, S. Hong, T. Hwang, Y. Lee, and J.-D. Nam, "Large-Area, Conductive and Flexible Reduced Graphene Oxide (Rgo) Membrane Fabricated by Electrophoretic Deposition (Epd)". ACS applied materials & interfaces, Vol. 6, no. 3, pp. 1747-1753, 2014.
[90] Yang, S., L. Chen, C. Wang, M. Rana, and P.-C. Ma, "Surface Roughness Induced Superhydrophobicity of Graphene Foam for Oil-Water Separation". Journal of colloid and interface science, Vol. 508, pp. 254-262, 2017.
[91] Andrews, J.E., Y. Wang, S. Sinha, P.W. Chung, and S. Das, "Roughness-Induced Chemical Heterogeneity Leads to Large Hydrophobicity in Wetting-Translucent Nanostructures". The Journal of Physical Chemistry C, Vol. 121, no. 18, pp. 10010-10017, 2017.
[92] Hwang, M.-J., M.-G. Kim, S. Kim, Y.C. Kim, H.W. Seo, J.K. Cho, I.-K. Park, J. Suhr, H. Moon, and J.C. Koo, "Cathodic Electrophoretic Deposition (Epd) of Phenylenediamine-Modified Graphene Oxide (Go) for Anti-Corrosion Protection of Metal Surfaces". Carbon, Vol. 142, pp. 68-77, 2019.
[93] Du, H., T. Xue, C. Xu, Y. Kang, and W. Dou, "Improvement of Mechanical Properties of Graphene/Substrate Interface Via Regulation of Initial Strain through Cyclic Loading". Optics and Lasers in Engineering, Vol. 110, pp. 356-363, 2018.
[94] Guo, G. and Y. Zhu, "Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer between a Monolayer Graphene and a Polymer Substrate". Journal of Applied Mechanics, Vol. 82, no. 3, 2015.
[95] Badway, F., A. Mansour, N. Pereira, J. Al-Sharab, F. Cosandey, I. Plitz, and G. Amatucci, "Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices". Chemistry of Materials, Vol. 19, no. 17, pp. 4129-4141, 2007.
[96] Biesinger, M.C., "Advanced Analysis of Copper X‐Ray Photoelectron Spectra". Surface and Interface Analysis, Vol. 49, no. 13, pp. 1325-1334, 2017.
[97] Liu, W.W., J.N. Wang, and X.X. Wang, "Charging of Unfunctionalized Graphene in Organic Solvents". Nanoscale, Vol. 4, no. 2, pp. 425-428, 2012.
[98] Darban, H., F. Fabbrocino, L. Feo, and R. Luciano, "Size-Dependent Buckling Analysis of Nanobeams Resting on Two-Parameter Elastic Foundation through Stress-Driven Nonlocal Elasticity Model". Mechanics of Advanced Materials and Structures, pp. 1-9, 2020.
[99] Li, Q., X.-Z. Liu, S.-P. Kim, V.B. Shenoy, P.E. Sheehan, J.T. Robinson, and R.W. Carpick, "Fluorination of Graphene Enhances Friction Due to Increased Corrugation". Nano letters, Vol. 14, no. 9, pp. 5212-5217, 2014.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2022-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明