博碩士論文 108328018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:141 、訪客IP:3.134.81.206
姓名 謝子喬(TZU-CHIAO HSIEH)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 紫外光輻照於輔助轉印高品質石墨烯之研究
(The Investigation on the UV-light Assisted Dry Transferring of High-quality Graphene Film)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究
★ 真空壓印於二維材料轉印製程之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前運用化學氣相沉積法在金屬基板(如銅、鎳)上合成大面積石墨烯雖然是非常成熟的技術,但是目前仍然無法直接將合成在金屬催化基板上的石墨烯直接應用於各式元件中;因此需要藉由轉印技術來將石墨烯從金屬基板轉移到其他目標基板上。雖然已經有各種不同方法被提出,但是在轉印的過程中仍然會造成破壞、汙染甚至是高分子的殘留,進而影響石墨烯本身的材料特性。因此如何減少轉印過程中的破壞以及降低缺陷的形成,並得到大面積潔淨石墨烯薄膜,是目前石墨烯應用上首要解決的難題。
本實驗將以紫外光解黏膠帶取代捲對捲乾式轉印中常用的熱解黏膠帶作為支撐層;並且使用更容易去除的高分子Rosin作為緩衝層來降低轉印過程中造成的缺陷和殘留。其中具體研究成果:(1)使用紫外光解黏膠帶轉印的石墨烯表面潔淨度達99.1 %且載子遷移率為1105 cm2/Vs,比傳統濕式轉印高約1.6倍,也比TRT乾式轉印高約1.1倍。(2)紫外光解黏膠帶的脫附機制,不必經過繁雜的曝光顯影步驟,讓石墨烯可在脫離光解黏膠帶時同步選擇性圖案化,最小線寬約100 μm,並用於後續元件製作。此外,在實驗過程中發現紫外光能使緩衝層- Rosin劣化讓它從長鏈的聚合物分解成短分子,而當Rosin分子之間的鍵結被打斷後,有利於在有機溶劑清洗時,讓Rosin變得更加容易被去除,並且基於Rosin裂解的機制,將Rosin照射紫外光後再放置於潮濕環境中,也發現能加快Rosin劣化。對TRT乾式轉印的石墨烯表面進行紫外光與潮濕環境的處理與未經任何處理的比較,其潔淨度高達99.4 %且載子遷移率升高1.3倍,此實驗發現更有效去除Rosin且不會對石墨烯造成缺陷的方法,本研究提供一個同時圖案化且高品質石墨烯轉印的策略,有助於未來石墨烯於多樣化之功能性元件的應用。
摘要(英) Currently, the synthesis of large-area graphene on metal substrates (such as copper and nickel) by chemical vapor deposition method is a mature technology; however, it is still challenging to directly apply graphene, synthesized on catalytic substrates, to various components. Therefore, it is necessary to transfer graphene from the metal substrate to target substrates. Although various methods have been proposed, the transfer process will still cause the defeat, pollution and even polymer residues, which will affect the material properties of pristine graphene. Therefore, how to reduce the damage during the transfer process and avoid the formation of defects for obtaining a large-area clean graphene film, is the main issue required to be addressed before it been used in various applications.
In this work, we proposed the ultraviolet light release tape as the support layer for replacing the frequently used thermal release tape in a typical roll-to-roll dry transferring process; and use the easier-to-remove polymer Rosin as a buffer layer to reduce the defects that occur during the transfer process. The specific research results: (1) The surface cleanliness of graphene transferred by ultraviolet light release tape is 99 % and the mobility is 1105 cm2/Vs, which is about 1.6 times higher than that of general wet transfer and is also about 1.1 times higher than TRT transfer. (2) The UV illumination lead to the facile release of graphene film which is beneficial to achieving one-step and selective patterning of graphene go without the complicated procedure, with a minimum width of about 100 μm and feasible for the subsequent component integration. Moreover, it was found that UV light can degrade the buffer layer-Rosin, which decomposes rosin from long-chain polymers into short molecules. When the bond between the rosin molecules is broken, it is beneficial for obtaining the cleaning graphene surface. Based on the mechanism of Rosin dissociation, the Rosin is irradiated with ultraviolet light followed by facilitated degradation under a humid environment. The graphene of TRT transfer printing is treated with ultraviolet light and humid environment compared with the graphene of pristine TRT transfer, the cleanliness is 99.4 % and the carrier mobility is increased by 1.3 times. The method found that the Rosin is more effectively removed and that does not cause defects in graphene. This proposed transferring method enables the facile patterning together with maintaining the high-quality graphene film, which paves the way to versatile functional graphene applications.
關鍵字(中) ★ 石墨烯
★ 轉印方法
★ 紫外光
★ 選擇性圖案化
關鍵字(英) ★ graphene
★ transfer methods
★ ultraviolet light
★ selective patterning
論文目次 目錄
中 文 摘 要 v
Abstract vi
致謝 viii
目錄 ix
圖目錄 xi
表目錄 xv
第一章 緒論 - 1 -
第二章 文獻回顧與研究動機 - 7 -
2.1統整各類轉印石墨烯方法的特性與優劣 - 7 -
2.2 典型濕式轉印方法 - 7 -
2.3 乾式轉印方法 - 8 -
2.4 電化學輔助方法 - 10 -
2.5 超潔淨石墨烯之高分子殘留物的清潔方法 - 12 -
2.6 研究動機 - 18 -
第三章 研究架構和流程 - 19 -
3.1實驗藥品與設備 - 19 -
3.1.1 實驗藥品 - 19 -
3.1.2實驗製程與分析設備 - 20 -
3.2 實驗架構及流程 - 23 -
3.2.1 濕式與捲對捲乾式蝕刻轉印法 - 23 -
3.2.2 濕式與捲對捲乾式電化學輔助轉印法 - 25 -
3.2.3 製作紫外光解黏膠帶 - 28 -
3.2.4 紫外光解黏膠帶輔助乾式蝕刻轉印法 - 28 -
3.3 轉印石墨烯薄膜之表面潔淨度及完整度的定義與分析 - 29 -
第四章 結果與討論 - 31 -
4.1 電化學輔助剝離之氣泡插層法與氧化還原法 - 31 -
4.2 優化紫外光解黏膠帶輔助轉印之製程參數 - 38 -
4.2.1 滾輪熱壓溫度與紫外光照射時間的參數討論 - 38 -
4.2.2 紫外光解黏膠帶的厚度對石墨烯的影響 - 41 -
4.3 探討不同轉印方法的機制原理 - 43 -
4.3.1 比較不同轉印方法對於潔淨度、完整度及結晶品質等特性分析 - 46 -
4.3.2 比較不同轉印方法對於石墨烯電性的影響 - 49 -
4.4 研究劣化松香分子結構於製備超潔淨轉印石墨烯 - 51 -
4.4.1 利用紫外光解黏膠帶輔助獲得選擇性圖案化石墨烯 - 51 -
4.4.2 松香劣化對於轉印石墨烯品質的機制探討 - 53 -
第五章 結論與未來工作 - 61 -
5.1 結論 - 61 -
5.2 未來工作 - 62 -
參考資料 - 63 -
參考文獻 1. Lin, L., H. Peng, and Z. Liu, Synthesis challenges for graphene industry. Nature Materials, 2019. 18: p. 520-524.
2. Jena, D., Graphene, in Encyclopedia of Nanotechnology, B. Bhushan, Editor. 2016, Springer Netherlands: Dordrecht. p. 1346-1357.
3. Shin, K.Y., J.Y. Hong, and J. Jang, Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chemical Communications, 2011. 47(30): p. 8527-8529.
4. Deng, B., et al., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Letters, 2015. 15(6): p. 4206-4213.
5. Abouali, S., et al., From scaled-up production of silicon-graphene nanocomposite to the realization of an ultra-stable full-cell Li-ion battery. 2d Materials, 2021. 8(3): p. 13.
6. Chauhan, N., T. Maekawa, and D.N.S. Kumar, Graphene based biosensors-Accelerating medical diagnostics to new-dimensions. Journal of Materials Research, 2017. 32(15): p. 2860-2882.
7. Lin, Y., et al., Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties. Advanced Functional Materials, 2015. 25(19): p. 2920-2927.
8. Pei, S.F., et al., Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 2018. 9: p. 9.
9. Xu, Y.Y., et al., Liquid-Phase Exfoliation of Graphene: An Overview on Exfoliation Media, Techniques, and Challenges. Nanomaterials, 2018. 8(11): p. 32.
10. Tetlow, H., et al., Growth of epitaxial graphene: Theory and experiment. Physics Reports-Review Section of Physics Letters, 2014. 542(3): p. 195-295.
11. Su, C.Y., et al., High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. Acs Nano, 2011. 5(3): p. 2332-2339.
12. Saeed, M., et al., Chemical Vapour Deposition of Graphene-Synthesis, Characterisation, and Applications: A Review. Molecules, 2020. 25(17): p. 62.
13. Yang, X.H., et al., Chemical vapour deposition of graphene: layer control, the transfer process, characterisation, and related applications. International Reviews in Physical Chemistry, 2019. 38(2): p. 149-199.
14. Li, X.S., L. Colombo, and R.S. Ruoff, Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition. Advanced Materials, 2016. 28(29): p. 6247-6252.
15. Watson, A.J., et al., Transfer of large-scale two-dimensional semiconductors: challenges and developments. 2d Materials, 2021. 8(3): p. 27.
16. Zheng, F.Y., et al., Critical Stable Length in Wrinkles of Two-Dimensional Materials. Acs Nano, 2020. 14(2): p. 2137-2144.
17. Kang, J., et al., Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. Acs Nano, 2012. 6(6): p. 5360-5365.
18. Ngoc, H.V., et al., PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method. Scientific Reports, 2016. 6.
19. Hong, M., et al., Decoupling the Interaction between Wet-Transferred MoS2 and Graphite Substrate by an Interfacial Water Layer. Advanced Materials Interfaces, 2018. 5(21).
20. Castellanos-Gomez, A., et al., Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2d Materials, 2014. 1(1).
21. Liang, J.R., et al., Impact of Post-Lithography Polymer Residue on the Electrical Characteristics of MoS2 and WSe2 Field Effect Transistors. Advanced Materials Interfaces, 2019. 6(3).
22. Liang, X.L., et al., Toward Clean and Crackless Transfer of Graphene. Acs Nano, 2011. 5(11): p. 9144-9153.
23. Bissett, M.A., M. Tsuji, and H. Ago, Strain engineering the properties of graphene and other two-dimensional crystals. Physical Chemistry Chemical Physics, 2014. 16(23): p. 11124-11138.
24. Bendiab, N., et al., Unravelling external perturbation effects on the optical phonon response of graphene. Journal of Raman Spectroscopy, 2018. 49(1): p. 130-145.
25. Lee, J.E., et al., Optical separation of mechanical strain from charge doping in graphene. Nature Communications, 2012. 3.
26. Kang, J., et al., Graphene transfer: key for applications. Nanoscale, 2012. 4(18): p. 5527-5537.
27. Ma, L.P., W.C. Ren, and H.M. Cheng, Transfer Methods of Graphene from Metal Substrates: A Review. Small Methods, 2019. 3(7): p. 13.
28. Ullah, S., et al., Graphene transfer methods: A review. Nano Research: p. 17.
29. Goniszewski, S., et al., Self-supporting graphene films and their applications. Iet Circuits Devices & Systems, 2015. 9(6): p. 420-427.
30. Kim, H.H., et al., Wetting-Assisted Crack- and Wrinkle-Free Transfer of Wafer-Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies. Advanced Functional Materials, 2016. 26(13): p. 2070-2077.
31. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-578.
32. Kim, S.J., et al., Ultraclean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films. Nano Letters, 2015. 15(5): p. 3236-3240.
33. Choi, T., et al., Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion. Nanoscale, 2015. 7(16): p. 7138-7142.
34. Shivayogimath, A., et al., Do-It-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water. Chemistry of Materials, 2019. 31(7): p. 2328-2336.
35. Hempel, M., et al., Repeated roll-to-roll transfer of two-dimensional materials by electrochemical delamination. Nanoscale, 2018. 10(12): p. 5522-5531.
36. Lu, W.E., et al., Selective soluble polymer-assisted electrochemical delamination of chemical vapor deposition graphene. Journal of Solid State Electrochemistry, 2019. 23(3): p. 943-951.
37. Cherian, C.T., et al., ′Bubble-Free′ Electrochemical Delamination of CVD Graphene Films. Small, 2015. 11(2): p. 189-194.
38. Yang, X.J. and M.D. Yan, Removing contaminants from transferred CVD graphene. Nano Research: p. 12.
39. Zhang, Z.K., et al., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017. 8: p. 9.
40. Chandrashekar, B.N., et al., Oil boundary approach for sublimation enabled camphor mediated graphene transfer. Journal of Colloid and Interface Science, 2019. 546: p. 11-19.
41. Leong, W.S., et al., Paraffin-enabled graphene transfer. Nature Communications, 2019. 10.
42. Fragala, M.E., et al., Ion beam assisted unzipping of PMMA. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 1998. 141(1-4): p. 169-173.
43. Wang, Q., et al., Investigating the nano-tribological properties of chemical vapor deposition-grown single layer graphene on SiO2 substrates annealed in ambient air. Rsc Advances, 2015. 5(13): p. 10058-10064.
44. Wang, X.H., et al., Direct Observation of Poly(Methyl Methacrylate) Removal from a Graphene Surface. Chemistry of Materials, 2017. 29(5): p. 2033-2039.
45. Suhail, A., et al., Reduction of polymer residue on wet-transferred CVD graphene surface by deep UV exposure. Applied Physics Letters, 2017. 110(18): p. 5.
46. Sun, H.Y., et al., High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. Journal of Materials Chemistry C, 2017. 5(8): p. 1880-1884.
47. Kim, J.H., et al., Facile Dry Surface Cleaning of Graphene by UV Treatment. Journal of the Korean Physical Society, 2018. 72(9): p. 1045-1051.
48. Zhuang, B.Z., et al., Ways to eliminate PMMA residues on graphene - superclean graphene. Carbon, 2021. 173: p. 609-636.
49. Sun, J.B., H.O. Finklea, and Y.X. Liu, Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene. Nanotechnology, 2017. 28(12): p. 9.
50. Qi, P.W., et al., Wax-assisted crack-free transfer of monolayer CVD graphene: Extending from standalone to supported copper substrates. Applied Surface Science, 2019. 493: p. 81-86.
51. Quellmalz, A., et al., Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nature Communications, 2021. 12(1): p. 11.
52. Liou, J.Y. and Y.S. Sun, Tailor-made dimensions of diblock copolymer truncated micelles on a solid by UV irradiation. Soft Matter, 2015. 11(36): p. 7119-7129.
53. Liu, J.L., et al., Kinetics of gum rosin oxidation under 365 nm ultraviolet irradiation. Monatshefte Fur Chemie, 2014. 145(1): p. 209-212.
54. Bai, F., H. Liang, and H. Qu, Structural Evolution of Burmese Amber during Petrifaction Based on a Comparison of the Spectral Characteristics of Amber, Copal, and Rosin. Journal of Spectroscopy, 2019. 2019: p. 11.
55. Kang., M.H., et al., Mechanical Robustness of Graphene on Flexible Transparent Substrates. Acs Applied Materials & Interfaces, 2016. 8: p. 22506−22515.
56. Wang, X.H., et al., Direct Delamination of Graphene for High-Performance Plastic Electronics. Small, 2014. 10(4): p. 694-698.
指導教授 蘇清源(CHING-YUAN SU) 審核日期 2021-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明