博碩士論文 108328601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:164 、訪客IP:44.222.64.76
姓名 孔令宇(Kong Lingyu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 應用混合彈性流體動力潤滑模型於不同磨紋齒面嚙合性能之數值模擬
(Application of Mixed Elasto-hydrodynamic Lubrication Model on Meshing Performance Simulation for Mating Gear Surfaces with Different Grinding Textures)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-30以後開放)
摘要(中) 在透過創成磨齒加工齒輪的過程中,通常會在齒面產生規則且平行的齒面磨削紋理;而透過珩齒加工出的齒輪,其表面通常具有不規則的交錯紋理。為探討兩種磨紋對齒輪傳動性能之影響,本研究建立了一個混合流體動力润滑的數值模型,以模擬螺旋齒輪啮合時的润滑機制,並透過數值模擬軟體KissSoft計算不同具磨紋齒輪之傳動誤差、油膜溫度。結果表明具有交錯磨紋之齒輪,在齒面嚙合過程中,齒面間平均油膜厚度較大,且在高轉速下傳動誤差較小。因此相較於齒面具有平行磨紋之齒輪,具有交錯磨紋之齒輪整體傳動性能較佳。
摘要(英) During the gear manufacturing process using hobbing, regular and parallel tooth surface grinding patterns are typically formed. In contrast, gears produced through shaving exhibit surfaces with irregular and intersecting grinding patterns. To explore the impact of these two surface textures on gear transmission performance, this study established a numerical model based on mixed fluid hydrodynamic lubrication to simulate the lubrication mechanism during helical gear meshing. The numerical simulation software KissSoft was also employed to calculate the transmission errors for different gears with textured tooth surfaces. The results showed that gears with intersecting grinding patterns had larger average oil film thickness and lower average friction coefficient during the tooth meshing process, resulting in smaller transmission errors and lower oil film tempurature. Therefore, compared to gears with parallel grinding patterns on the tooth surface, gears with intersecting grinding patterns exhibited better overall transmission performance.
關鍵字(中) ★ 齒面磨紋
★ 油膜厚度
★ 傳動誤差
★ 油膜溫度
關鍵字(英) ★ grinding texture
★ oil film thickness
★ transmission error
★ oil film temperature
論文目次 摘要 i
ABSTRACT ii
目錄 iii
圖目錄 v
表目錄 vii
符號對照表 viii
第1章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 1
1-3 研究動機與目的 4
1-4 研究架構 5
第2章 齒輪混合流體動力潤滑模型之建立 6
2-1 基礎參數設定 6
2-2 螺旋齒輪動力學模型之建立 7
2-3 齒面磨紋取樣方法之建立 10
2-4 表面形貌參數之計算 13
2-5 混合流體動力潤滑之數學模型建立 15
第3章 具磨削紋理齒面潤滑性能分析 19
3-1 模型定義、假設及簡化 19
3-2 MEHL模型分析具磨紋齒面潤滑性能之數值範例 20
3-3 KISSsoft軟體模擬具磨紋齒面潤滑性能之範例 22
第4章 齒面嚙合性能綜合分析 25
4-1 具正弦波紋理齒面之潤滑性能 25
4-2 具正弦波紋理齒面之接觸溫度 27
4-3 具正弦波紋理齒面之傳動誤差 29
第5章 總結與未來展望 32
5-1 總結 32
5-2 未來展望 32
參考文獻 33
作者介紹 36
參考文獻 [1] W. Graf, “Modification of Surface Structure and Geometry on Gears,”Reishauer AG, Switzerland, 2017
[2] Yang, Y. C., Wu, Y. R., & Tsai, T. M. (2022). An analytical method to control and predict grinding textures on modified gear tooth flanks in CNC generating gear grinding. Mechanism and Machine Theory, 177, 105023.
[3] Yang, P., & Yang, P. (2007). Analysis on the thermal elastohydrodynamic lubrication of tapered rollers in opposite orientation. Tribology International, 40(10-12), 1627-1637.
[4] Liu, M., Zhu, C., Liu, H., Ding, H., & Sun, Z. (2014). Effects of working conditions on TEHL performance of a helical gear pair with non-Newtonian fluids. Journal of Tribology, 136(2).
[5] Greenwood, J. A., & Williamson, J. P. (1966). Contact of nominally flat surfaces. Proceedings of the royal society of London. Series A. Mathematical and physical sciences, 295(1442), 300-319.
[6] Greenwood, J. A., & Tripp, J. H. (1970). The contact of two nominally flat rough surfaces. Proceedings of the institution of mechanical engineers, 185(1), 625-633.
[7] Gelinck, E. R. M., & Schipper, D. J. (2000). Calculation of Stribeck curves for line contacts. Tribology International, 33(3-4), 175-181.
[8] Johnson, K. L., Greenwood, J. A., & Poon, S. Y. (1972). A simple theory of asperity contact in elastohydro-dynamic lubrication. Wear, 19(1), 91-108.
[9] Moes, H. (1992). Optimum similarity analysis with applications to elastohydrodynamic lubrication. Wear, 159(1), 57-66.
[10] Lu, X., Khonsari, M. M., & Gelinck, E. R. M. (2006). The Stribeck curve: experimental results and theoretical prediction. Journal of Tribology, 128, pp 789–794.
[11] Han, L., Zhang, D. W., & Wang, F. J. (2013). Predicting film parameter and friction coefficient for helical gears considering surface roughness and load variation. Tribology Transactions, 56(1), 49-57.
[12] Zhu, D., & Jane Wang, Q. (2013). Effect of roughness orientation on the elastohydrodynamic lubrication film thickness. Journal of Tribology, 135(3).
[13] Colbourne, J. R. (2012). The geometry of involute gears. Springer Science & Business Media.
[14] Ebrahimi Serest, A., & Akbarzadeh, S. (2014). Mixed-elastohydrodynamic analysis of helical gears using load-sharing concept. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(3), 320-331.
[15] Bhushan, B. (2013). Introduction to tribology. John Wiley & Sons.
[16] Zhu, C., Liu, M., Liu, H., Xu, X., & Liu, L. (2013). A thermal finite line contact EHL model of a helical gear pair. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(4), 299-309.
[17] Pedrero, J. I., Pleguezuelos, M., Artés, M., & Antona, J. A. (2010). Load distribution model along the line of contact for involute external gears. Mechanism and Machine Theory, 45(5), 780-794.
[18] Bhushan, B. (2013). Introduction to tribology. John Wiley & Sons.
[19] Houpert, L. (1985). New results of traction force calculations in elastohydrodynamic contacts. Journal of Tribology, 107(84), 241–245.
[20] Dong, W. P., Sullivan, P. J., & Stout, K. J. (1994). Comprehensive study of parameters for characterising three-dimensional surface topography: III: Parameters for characterising amplitude and some functional properties.Wear, 178(1-2), 29-43.
[21] Whitehouse, D. J., & Archard, J. F. (1970). The properties of random surfaces of significance in their contact. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 316(1524), 97-121.
[22] Pogačnik, A., & Kalin, M. (2013). How to determine the number of asperity peaks, their radii and their heights for engineering surfaces: a critical appraisal. Wear, 300(1-2), 143-154.
[23] Dong, W. P., Sullivan, P. J., & Stout, K. J. (1994). Comprehensive study of parameters for characterising three-dimensional surface topography: IV: Parameters for characterising spatial and hybrid properties. Wear, 178(1-2), 45-60.
[24] Zhou, C., Xing, M., Hu, B., & Shi, Z. (2020). A Modified Wear Model Considering Contact Temperature for Spur Gears in Mixed Elastohydrodynamic Lubrication. Tribology Letters, 68(4), 1-17.
指導教授 吳育仁(Wu, Yu-Ren) 審核日期 2023-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明