博碩士論文 108329002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.144.124.232
姓名 許顥騰(Hao-Teng Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
(Carbon nanofibers decorated with Ag/MnO2 nanosheets applied in supercapacitors)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池
★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池★ 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技蓬勃發展,舉凡攜帶式的行動裝置以及穿戴式活動感應器等設備皆對人類的生活習慣帶來巨大的影響,然而,同時能源的消耗也隨之增加,因此人們對於電化學儲能裝置的需求日益增多。當中,可撓型超級電容器不僅擁有超級電容器優異的功率密度與儲電能力,更可輕薄化裝置,有效運用有限的空間,藉此應用於穿戴式和摺疊式的電子裝置,便於人們適應快速的生活型態以及帶來生活上更多便利。
在此研究中結合奈米碳纖維與奈米銀粒子製作可用於可撓式元件之電極材料,利用靜電紡絲技術,製備出摻銀奈米碳纖維,再以水熱法將過錳酸鉀還原生長出二氧化錳奈米片當作活性物質,完成之材料可直接作為超級電容器電極材料進行量測,無須額外添加黏合劑和助導劑,並使用聚二甲基矽氧烷(PDMS)作為可撓性基板,將透明的PDMS柔性基板搭配電極材料,能再進一步製備出可撓式超級電容器元件。製備完成之電極片在三極系統量測中,以電流密度1 A/g下,可達比電容值為122.5 F/g,表現出良好的能量密度並同時擁有超級電容器極佳的功率密度。除此之外,同時實驗也進行可撓性測試,在彎曲的曲率半徑1.25 cm ~ 5 cm下,進行循環伏安的測試,由實驗結果可得知,元件之循環伏安曲線在不同曲率的彎曲下,並未發現有明顯的變化,故表示出此元件擁有良好的可撓曲性質。
經過改良後電極材料具有相當水準之電化學性能,說明二氧化錳奈米片的修飾以及添加銀奈米粒子之改質有助於奈米碳纖維提升電化學性能,且銀的添加更可使原本性質較脆的奈米碳纖維具有相當的可撓曲程度,本研究中的材料改質技術以及所設計之超電容元件在儲能系統中具有良好的發展潛力和應用前景。
摘要(英) With the rapid development of technology, many portable and wearable electronic devices
have great impact on human living habits. At the same time the increase of energy consumption
has brought up research attention on developing electrochemical energy storage devices.
Among them, flexible supercapacitors not only have excellent power density and storage
capacity, but also can be used in limited spaces. Flexible supercapacitors can be used as energy
storage device in wearable and foldable electronic devices to facilitate fast and convenient
lifestyle.
In this study, carbon nanofibers were combined with silver nanoparticle to make flexible
electrode of the supercapacitor device. Silver-doped carbon nanofibers were prepared by
electrospinning, and then active materials of manganese dioxide nanosheets were grown by
hydrothermal reaction. The finished carbon nanofibers decorated with Ag/MnO2 nanosheets
can be directly used as electrode materials for measurement without the need of additional
binders and conducting agents. Furthermore, a flexible supercapacitor device was prepared by
assembling the polydimethylsiloxane (PDMS) flexible substrate with the CNF/Ag/MnO2
electrode. The charge-discharge curve showed that the electrode has high specific capacitance
value of 122.5 F/g at a current density of 1 A/g, demonstrating a good energy density and at the
same time having an excellent power density. Bending tests were performed to test the
flexibility of supercapacitor. Under different bending conditions, the results show that the cyclic
voltammetry curves of the device did not change obviously. This represents that the
supercapacitor device has good flexibility.
The improved electrode material demonstrated great electrochemical performance,
indicating that the modification of manganese dioxide nanosheets and the addition of silver
nanoparticles can improve the electrochemical performance. Besides, the silver nanoparticles
provided considerable degree of flexibility for the carbon nanofiber electrode. The results
showed that the material modification and components designed in this research have great
development potential and application prospects in energy storage systems.
關鍵字(中) ★ 超級電容器
★ 可撓超電容
★ 擬電容
★ 奈米碳纖維
★ 儲能元件
關鍵字(英) ★ supercapacitor
★ flexible supercapacitor
★ pseudocapacitor
★ carbon nanofiber
★ energy storage device
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2基本原理與文獻回顧 2
1.2.1超級電容器簡介 2
1.2.2超級電容器之電極材料 9
1.2.3超級電容器之電解質 14
1.2.4超級電容器之電化學分析技術 18
1.3奈米碳纖維應用於超級電容器 22
1.3.1奈米碳纖維用作電極材料 22
1.3.2奈米碳纖維的製備方式 23
1.3.3添加活性物質 24
1.3.4 Ag/MnO2修飾奈米纖維材料用於超級電容器之優勢 25
1.4可撓型超級電容器 25
1.5研究動機與目的 26
第二章 實驗程序與方法 28
2.1實驗藥品 28
2.2製程與分析儀器 29
2.2.1靜電紡絲機(Electrospinning machine) 29
2.2.2掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 29
2.2.3穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 30
2.2.4 X光粉末繞射儀(X-ray diffractometer,XRD) 30
2.2.5恆電位儀(Potentiostat) 31
2.3實驗流程 32
2.4實驗方法 33
2.4.1奈米碳纖維(Carbon nanofiber,CNF)製備 33
2.4.2奈米碳纖維熱處理 34
2.4.3添加銀奈米粒子 34
2.4.4生長活性物質 34
2.4.5製備柔性基板 35
2.4.6組裝可撓曲超級電容器 35
2.4.7配置液態和固態電解質 35
第三章 結果與討論 36
3.1材料微結構分析 36
3.1.1. 掃描式電子顯微鏡分析(SEM) 36
3.1.2. 穿透式電子顯微鏡分析(TEM) 40
3.2材料導電度測試 41
3.2.1. 片電阻(Sheet Resistance) 41
3.3材料相分析 43
3.3.1. X光粉末繞射儀分析(XRD) 43
3.4不同奈米碳纖維電極材料之超級電容器特性分析 45
3.4.1循環伏安與恆電流充放電分析 45
3.4.2電化學交流阻抗分析 55
3.4.3頻率響應分析 57
3.4.4可撓式超級電容器之抗撓曲分析 63
第四章 結論 65
第五章 參考文獻 66
參考文獻 1. D. P. Dubal, P. Gomez-Romero, B. R. Sankapal and R. Holze, “Nickel Cobaltite as an Emerging Material for Supercapacitors: An Overview,” Nano Energy 11, 377-399(2015).
2. P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors,” Nat. Mater. 7, 845-854(2008).
3. A. González, E. Goikolea, J. A. Barrena and R. Mysyk, “Review on supercapacitors: technologies and materials, ” Renew Sustain Energy Rev. 58, 1189-1206(2016).
4. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, “Electrochemical Energy Storage for Green Grid,” Chem. Rev. 111, 3577-3613(2011).
5. Y. Wang, J. Guo, T. Wang, J. Shao, D. Wang and Y.-W. Yang, “Mesoporous Transition Metal Oxides for Supercapacitors,” Nanomaterials 5, 1667-1689 (2015).
6. Simon, P.; Gogotsi, Y. Nature Materials 7, 845-854(2008).
7. 車倩,超級電容器用過渡金屬氧化物NiCo2O4,南京航空航天大學材料科學與技術學院碩士論文,2013年.
8. M. Vangari, T. Pryor and L. Jiang, “Supercapacitors: Review of Materials and Fabrication Methods,” J. Energy Eng. 139, 72-79(2013).
9. R. Kötz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochim. Acta 45, 2483-2498(2000).
10. G. Wang, L. Zhang and J. Zhang, “A Review of Electrode Materials for Electrochemical Supercapacitors,” Chem. Soc. Rev. 41, 797-828(2012).
11. L. L. Zhang and X. S. Zhao, “Carbon-based Materials as Supercapacitor Electrodes,” Chem. Soc. Rev. 38, 2520-2531(2009).
12. M. S. Kolathodi, M. Palei and T. S. Natarajan, “Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors,” J. Mater. Chem. A 3, 7513-7522(2015).
13. J. Q. Xiao, Q. Lu, and J. G. Chen, “Nanostructured Electrodes for High-performance Pseudocapacitors,” Angew. Chem. Int. Ed. 52, 1882-1889(2013).
14. V. Augustyn, P. Simon and B. Dunn, “Pseudocapacitive Oxide Materials for High-rate Electrochemical Energy Storage,” Energy Environ. Sci. 7, 1597-1614(2014).
15. H. Zhao, W. Han, W. Lan, J. Zhou, Z. Zhang, W. Fu and E. Xie, “Bubble Carbon-nanofibers Decorated with MnO2 Nanosheets as High-Performance Supercapacitor Electrode,” Electrochim. Acta 222, 1931-1939(2016).
16. H. Wang, H. S. Casalongue, Y. Liang and H. Dai, “Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials,” J. Am. Chem. Soc. 132, 7472-7477(2010).
17. S. C. Lee, U. M. Patil, S. J. Kim, S. Ahn, S.-W. Kang and S. C. Jun, “All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes,” RSC Adv. 6, 43844-43854(2016).
18. C. W. Shen, X. H. Wang, S. W. Li, J. G. Wang, W. F. Zhang and F. Y. Kang, “A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies,” J. Power Sources 234, 302-309(2013).
19. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang, “Progress of electrochemical capacitor electrode materials: A review,” Int. J. Hydrogen Energy 34, 4889-4899(2009).
20. D. Dubal, J. G. Kim, Y.Kim, R.Holze, C.Lokhande, W. B.Kim “Supercapacitors Based on Flexible Substrates:An Overview”, Energy Technol 2, 325-341(2014).
21. G.Wang,L. Zhang,J. Zhang “A review of electrode materials for electrochemical supercapacitors”, Chem. Soc. Rev. 41, 797-928(2012).
22. Z. Li,T. Chang, G. Yun, J. Guo, B. Yang “2D tin dioxide nanoplatelets decorated graphene with enhanced performance supercapacitor” Journal of Alloys and Compounds 586, 353-359(2014).
23. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva and A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”,Science 306, 666-669(2004).
24. S.Wu,W.Chen ,L.Yan“Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors”,Journal of Materials Chemisity A 2, 2765-2772(2014).
25. D.Chen ,M.K.Song ,S.Cheng ,L.Huang ,M.Liu, “Contribution of carbon fiber paper(CFP) to the capacitance of a CFP-supported manganese oxide supercapacitor”, Journal of Power Sources 248, 1197-1200(2014).
26. S.-M. Chen, R. Ramachandran, V. Mani and R. Saraswathi, “Recent Advancements in Electrode Materials for the High-performance Electrochemical Supercapacitors: A Review,” Int. J. Electrochem. Sci. 9, 4072-4085(2014).
27. T. Zhai, X. Lu, F. Wang, H. Xia and Y. Tong, “MnO2 nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification,” Nanoscale Horiz. 1, 109-124(2016).
28. G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, “Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions,” J. Electrochem. Soc. 147, 2486-2493(2000).
29. O. Barbieri, M. Hahn, A. Herzog and R. Kotz, “Capacitance limits of high surface area activated carbons for double layer capacitors,” Carbon 43, 1303-1310(2005).
30. D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors,” J. Power Sources 74, 99-107(1998).
31. M. Endo, T. Maeda, T. Takeda, Y. J. Kim, K. Koshiba, H. Hara and M. S. Dresselhaus, “Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes,” J. Electrochem. Soc. 148, A910-A914(2001).
32. J. N. Barisci, G. G. Wallace and R. H. Baughman, “Electrochemical Characterization of Single-Walled Carbon Nanotube Electrodes,” J. Electrochem. Soc. 147, 4580-4583(2000).
33. S. Shiraishi, H. Kurihara, K. Okabe, D. Hulicova and A. Oya, “Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPcoTM BuckytubesTM) in propylene carbonate electrolytes,” Electrochem. Commun. 4, 593-598(2002).
34. C. Kim, “Electrochemical characterization of electrospun active carbon nanofiber as an electrode in supercapacitor,” J. Power Sources 142, 382-388(2005).
35. Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian and F. Wei, “A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors,” Adv Mater 22, 3723-3728(2010).
36. Y. Song, J.-L. Xu and X.-X. Liu, “Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode,” J Power Sources 249, 48-58(2014).
37. C. Z. Yuan, L. Yang, L. R. Hou, L. F. Shen, F. Zhang, D. K. Li, X. G. Zhang, “Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors,” J. Mater. Chem. 21, 18183-18185(2011).
38. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park and S. H. Chang, ” Symmetric redox supercapacitor with conducting polyaniline electrodes,” J. Power Sources 103, 305-309(2002).
39. A. Clémente, S. Panero, E. Spila and B. Scrosati, “Solid-state, polymer-based, redox capacitors,” Solid State Ionics 85, 273-277(1996).
40. A. Laforgue, P. Simon, C. Sarrazin and J.-F. Fauvarque, “Polythiophene-based supercapacitors,” J. Power Sources 80, 142(1999).
41. F. Selampinar, U. Akbulut and L. Toppare, “Conducting polymer composites of polypyrrole and polyimide,” Synth. Met. 84, 185-186(1997).
42. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang and J. J. Zhang, “A review of electrolyte materials and compositions for electrochemical supercapacitors,” Chem. Soc. Rev. 44, 7484-7539(2015).
43. H. Gao and K. Lian, “Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review,” RSC Adv. 4, 33091-33113(2014).
44. Francois Beguin(著), Elzbieta Frackowiak(著), 張治安(譯), “超級電容器:材料、系統及應用,” 機械工業出版, (2014).
45. D. S. Yu, K. Goh, H. Wang, L. Wei, W. C. Jiang, Q. Zhang, L. M. Dai and Y. Chen, “Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage,” Nat. Nanotech. 9, 555-562(2014).
46. D. Pech, M. Brunet, T. M. Dinh, K. Armstrong, J. Gaudet and D. Guay, “Influence of the configuration in planar interdigitated electrochemical micro-capacitors,” J. Power Sources 230 , 230-235(2013).
47. W. Zaidi, A. Boisset, J. Jacquemin, L. Timperman and M. Anouti, “Deep Eutectic Solvents Based on N-Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors,” J. Phys. Chem. C 118, 4033-4042(2014).
48. X.-M. Liu, R. Zhang, L. Zhan, D.-H. Long, W.-M. Qiao, J.-H. Yang and L.-C. Ling, “Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte,” New Carbon Mater 22, 153-1588(2007).
49. B. Huang, X.-Z. Sun, X. Zhang, D.-C. Zhang and Y.-W. Ma, “活性炭基軟包裝超級電容器用有機電解液,” Acta Phys.-Chim. Sin. 29, 1998-2004(2013).
50. Y. I. Kim, E. Samuel, B. Joshi, M. W. Kim, T. G. Kim, M. T. Swihart and S. S. Yoon, “Highly efficient electrodes for supercapacitors using silver-plated carbon nanofibers with enhanced mechanical flexibility and long-term stability,” Chemical Engineering Journal 353, 189-196(2018).
51. E. Ismar, T. Karazehir, M. Ates and A. S. Sarac, “Electrospun carbon nanofiber web electrode: Supercapacitor behavior in various electrolytes,” Journal of Applied Polymer Science 135(4), 45723(2018).
52. J. Ju, H. Zhao, W. Kang, N. Tian, N. Deng and B. Cheng, “Designing MnO2 & carbon composite porous nanofiber structure for supercapacitor applications,” Electrochimica Acta 258, 116-123(2017).
53. Y. Luo, J. Jiang, W. Zhou, H. Yang, J. Luo, X. Qi and T. Yu, “Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors,” Journal of Materials Chemistry 22(17), 8634-8640(2012).
54. Y. Yang, B. W. Deng, X. Liu, Y. Li, B. Yin and M. B. Yang, “Rational design of MnO2-nanosheets-decroated hierarchical porous carbon nanofiber frameworks as high-performance supercapacitor electrode materials,” Electrochimica Acta 324, 134891(2019).
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2021-10-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明