博碩士論文 108329009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.15.151.98
姓名 李紹晟(Shao-Cheng Lee)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 均質化處理與Zn/Mg比對Al-Zn-Mg-Cu(AA7095)合金機械性質、應力腐蝕性與淬火敏感性之影響
(Effect of Homogenization and Zn/Mg ratio on the mechanical properties, SCC resistance and quench sensitivity of Al-Zn-Mg-Cu (AA7095) alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由微結構觀察、熱分析、機械性質試驗及端面淬火試驗,探討Zn/Mg比(4.6/5.4/6.9)與均質化熱處理對 AA7095(Al-xZn-yMg-2.4Cu (wt%))合金耐腐蝕性、機械性質、淬火敏感性、與熱加工性之影響。結果顯示,含高Mg之低Zn/Mg比合金,經低溫(460°C)均質化處理後,晶界上析出具活性、且低融點之S(Al2CuMg)相,限制了合金熱加工、與固溶溫度,且成為合金破裂之起始點,將導致合金熱加工不易,耐蝕性低、及機械性質(強度與延性)偏低等。而當此高Mg之低Zn/Mg比合金施以兩段均質化(460°C+485°C)後,於低溫均質化所形成的S(Al2CuMg)相,將被充分回溶(dissolved)至鋁基地,消除了S(Al2CuMg)相對合金性質之傷害。
含高Mg之中Zn/Mg比合金,也需藉由兩段均質化才得以消除S(Al2CuMg)相,然而,因Zn含量的增加,提升了合金強化相η’(MgZn2)的析出動力、及數量,合金強度也隨之增加。但因非整合強化相的數量高,也導致合金淬火敏感性之提升。而含低Mg之高Zn/Mg比合金,於低溫(460°C)均質化處理後,並無S(Al2CuMg)相之析出,因此可在簡化的均質化程序下,便可獲得良好熱加工,耐蝕性、機械性質(強度與延性)、及低淬火敏感性組合之合金。
摘要(英) In this study, microstructure observation, thermal analysis, mechanical property test and end-quenching test were used to explore the effect of Zn/Mg ratio(4.6/5.4/6.9) and homogenization heat treatment on the mechanical properties, corrosion resistance, quenching sensitivity, and hot workability of AA7095(Al-xZn-yMg-2.4Cu (wt%)) alloys. The results show that the low Zn/Mg ratio alloy with high Mg content, after being homogenized at low temperature (460°C), the active and low melting point S(Al2CuMg) phase precipitates on the grain boundary, which limits the hot working of the alloy. And the solid solution temperature, and become the starting point of alloy fracture, which will result in low hot-workability of the alloy, low corrosion resistance, and low mechanical properties (strength and ductility). When low Zn/Mg ratio alloy with high Mg content is subjected to two stages of homogenization (460°C+485°C), the S (Al2CuMg) phase formed by the low temperature homogenization will be fully dissolved into the aluminum matrix, the damage of S(Al2CuMg) relative to the alloy properties is eliminated.
The alloy with high Mg content of medium Zn/Mg ratio, required to execute two-stages homogenization to eliminate the S(Al2CuMg) phase. However, due to the increase in Zn content, the precipitation power of the alloy strengthening phase η′(MgZn2) is increased, therefore the strength of the alloy also increased. However, due to the high number of non-integrated strengthening phases, the quenching sensitivity of the alloy is also increased. For alloys with low Mg content and high Zn/Mg ratio, after homogenization treatment at low temperature (460°C), there is no precipitation of S (Al2CuMg) phase, so good thermal processing can be obtained under simplified homogenization procedures, alloy with combination of corrosion resistance, mechanical properties (strength and ductility), and low quench sensitivity.
關鍵字(中) ★ Al-Zn-Mg-Cu合金
★ 均質化處理
★ 機械性質
★ 應力腐蝕性
★ 淬火敏感性
關鍵字(英) ★ Al-Zn-Mg-Cu alloy
★ homogenization treatment
★ mechanical properties
★ stress corrosion resistance
★ quench sensitivity
論文目次 摘要 I
Abstract II
謝誌 IV
總目錄 V
圖目錄 VIII
表目錄 XI
壹、前言與文獻回顧 1
1.1鋁合金簡介 1
1.2 Al-Zn-Mg-Cu(AA7095)合金簡介 2
1.3析出強化機制與Al-Zn-Mg-Cu系鋁合金析出強化序列 3
1.4 Zn含量對Al-Zn-Mg-Cu合金機械性質之影響 6
1.5 Mg含量對Al-Zn-Mg-Cu合金機械性質與微結構的影響 6
1.6 Cu含量對Al-Zn-Mg-Cu合金機械性質與微結構之影響 7
1.7一段式均質化處理與Zn/Mg比對Al-Zn-Mg-Cu合金微結構之影響 8
1.8兩段式均質化處理對Al-Zn-Mg-Cu合金機械性質與微結構之影響 11
1.9強化相析出量與其析出動力對Al-Zn-Mg-Cu合金淬火敏感性之影響 14
1.10研究目的與實驗規劃構思 15
貳、實驗步驟與方法 17
2.1合金融配 17
2.2均質化(一段式, 兩段式)、熱輥軋與退火 19
2.3冷輥軋與T6熱處理(含低溫固溶處理(LST)與高溫固溶處理(HST)) 19
2.4微結構分析 20
2.4.1導電度量測 20
2.4.2光學顯微鏡(Optical Microscopy, OM) 21
2.4.3掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 21
2.5機械性質分析 21
2.5.1硬度分析 21
2.5.2拉伸性質 22
2.6應力腐蝕試驗 22
參、結果與討論 23
3.1微結構分析 23
3.1.1鑄態與均質化態微結構分析 23
3.1.2差示掃描量熱儀(DSC)分析 27
3.1.3導電度分析 35
3.2 機械性質分析 38
3.3 應力腐蝕分析 42
3.3 淬火敏感性分析 44
肆、結論 47
伍、參考資料 49
參考文獻 [ASTM1] ASTM B918/B918M-17a, Standard Practice for Heat Treatment of Wrought Aluminum Alloy(2017).
[ASTM2] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials(2016).
[ASTM3] ASTM G129-00, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (2013).
[BIR] N. Birbilis, “Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys”, Journal of The Electrochemical Society, Vol.152, PP.140-151 (2005).
[CHEN1] Ziyong Chen, Yuanke Mo, Zuoren Nie, Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys, Metallurgical and Materials Transactions A, Vol.44A, pp.3910-3920(2013).
[CHEN2] S. Chen, K. Chen, G. Peng, L. Jia, P. Dong, “ Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy “, Materials & Design, Vol. 35, PP. 93-98, (2012).
[CHEN3] Hua Chen, Sam X. Gao, Paul A. Rometsch, Daokui Xu and Barry C. Muddle, Dissolution and Melting of Constituent Particles in a DC-cast Al-Zn-Mg-Cu Alloy 7150(Al-6.77Zn-2.29Mg-2.35Cu-0.13Zr) During Homogenization. Japan Institute of Light Metals. pp.1656-1661(2010).
[CEPEDA] C.M. Cepeda-Jimenez, O.A. Ruano, M.Carsi, F.Carreno, “Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization”, Material Science and Engineering A, Vol.552, pp.530-539(2012).
[CHIU] Yang-Chun Chiu, Kun-Ting Du, Hui-Yun Bor, Guang-Hui Liu, Sheng-Long Lee, The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys, Materials Chemistry and Physics, Vol.247, pp.1-7(2020).
[DENG] Yun-Lai Deng, Li Wan, Microstructural evolution of Al–Zn–Mg–Cu alloy during homogenization, Journal of Materials Science, Vol.46, pp.875–881(2011).
[DUR] Tolga Dursun, Costas Soutis, Recent developments in advanced aircraft aluminium alloys, Materials & Design,Vol.56, pp.862-871(2014).
[FAN] Xi-gang Fan, Da-ming Jiang, Qing-chang Meng, “Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment”, Transactions of Nonferrous Metals Society of China, vol.16 Issue 3 pp.577-581(2006).
[HID] Y. Hideo, B. Yoshio, Role of zirconium to improving strength and stress-corrosion resistance of Al-Zn-Mg and Al-Zn-Mg-Cu alloys, Journal of Japan Institute of Light Metals, Vol.31, pp.20-29(1981).
[HUM] F.J. Humphreys, M. Hatherly, “Recrystallization and related annealing phenomena”, ELSEVIER Ltd, pp.109-119(2004).
[IWA] S. Iwamura, Y. Miura, ′Loss in coherency and coarsening behavior of A13Sc precipitates", Acta Materialia, vol. 52, pp.591-600 (2004).
[LI1] Haichao Li, Fuyang Cao, Shu Guo, Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys, Journal of Alloys and Compounds, (2017).
[LI2] Zhihui Li, Yongan Zhang, Baiqing Xiong, Investigation on Microstructure in As-Cast Aluminum Alloy 7136 and Its Evolution During Homogenization, Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing, pp.1299-1305(2013).
[LIU] L. Liu, Y. Y. Jia, J. T. Jiang, B. Zhang, G. A. Li, W. Z. Shao, L. Zhen, “The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys”, Journal of Alloys and Compounds, Vol. 799, PP.1-14 (2019).
[PENG] X. Peng, Y. Li, Q. Guo, G. Xu, “Effects of Enhanced Solution Treatment on Stress Corrosion Behavior of Al-Zn-Mg-Cu Alloy”, The Minerals, Metals & Materials Society, Vol. 70, PP. 2692-2697 (2018).
[QIN] Qingjiang Meng, G. S. Frankel, “Effect of Cu Content on Corrosion Behavior of 7xxx Series Aluminum Alloys”, Journal of The Electrochemical Society, vol.151, pp.271-283.(2004).
[ROM]P. A. Rometsch, Y. Zhang, S. Knight,” Heat treatment of 7xxx series aluminium alloys—Some recent developments”, Trans. Nonferrous Met. Soc. China, 24, pp.2003−2017(2014).
[SAHA] Pradip K. Saha and Associates, “Aluminum Extrusion Technology”, ASM Interational Materials Park, Ohio, Chapter.7, pp.187-190(2000).
[SAR] B. Sarkar, M. Marek, E. A. Starke, “The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-X Cu alloys”, Metallurgical Transactions A, Vol. 12, PP. 1939–1943 (1981).
[SEM] S.L Semiatin and Associates, “ASM Handbook: Metalworking: Bulk Forming- Extrusion of Aluminum Alloys”, ASM International Materials Park, Vol.14A, pp.552-557(2008).
[SHU] Wen-xiang Shu, Jun-cheng Liu, Long-gang Hou, Microstructural evolution of Al-8.59Zn-2.00Mg-2.44Cu during homogenization, International Journal of Minerals, Metallurgy and Meterials, Vol.21, pp1215-1221(2014).
[SPE] M. O. Speidel, M. V. Htatt, “Advances in Corrosion Science and Technology“, Vol.2, Plenum Press, PP.115-127 (1972).
[STA] X.-M. Li, M. J. Starink, “The Effect of Compositional Variations on the Characteristics of Coarse Intermetallic Particles in Overaged 7xxx Al Alloys”, Mater. Sci. Techn, vol.17, pp.1324-1328(2001).
[TAA] The Aluminum Association, International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys, pp.1-31(2015).
[WANG1] Wang Feng, Xiong Baiqing, ZhangYongan, Effect of heat treatment on the microstructure and mechanical properties of the spray-deposited Al–10.8Zn–2.8Mg–1.9Cu alloy, Materials Science and Engineering A, Vol.486, pp.648-652(2008).
[WANG2] L. Wang, M.Strangwood, D. Balinta, J. Lina, “Formability and failure mechanisms of AA2024 under hot forming conitions”, Acta Materialia, Vol.77, pp.1-16(2014).
[XU1] Da Xu, Zhihui Li, Guojun Wang, Phase transformation and microstructure evolution of an ultrahigh strength Al-Zn-Mg-Cu alloy during homogenization, Materials Characterization, Vol.131, pp.285-297(2017).
[XU2] D. K. Xu, P. A. Rometsch, “Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion Cracking of an As-Rolled Al-Zn-Mg-Cu Alloy”, Corrosion Science, Vol. 68 (2012).
[XU3] D. K. Xu, P. A. Rometsch, N. Birbilis, “Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part II. Microstructure and mechanical properties”, Materials Science and Engineering: A, Vol. 534, PP. 244-252 (2012).
[ZHE] Y. Zheng, C. Li, S. Liu, Y. Deng, X. Zhang, Effect of homogenization time on quench sensitivity of 7085 aluminum alloy, Transactions of Nonferrous Metals Society of China. Vol. 24 pp. 2275−2281 (2014).
指導教授 李勝隆(Sheng-Lon Lee) 審核日期 2021-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明