博碩士論文 108329011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.145.23.123
姓名 連昱嘉(Yu-Jia Lain)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 固溶處理對Al-9.0Zn-2.3Mg-xCu合金機械性質與腐蝕性質之影響
(Effect of solution treatment on mechanical properties and corrosion properties of Al-9Zn-2.3Mg-xCu alloy)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由顯微結構觀察、差示掃描量熱法、機械性質與腐蝕性質(剝落腐蝕、極化腐蝕與耐應力腐蝕性)試驗等,探討Cu (1.2, 1.9 wt%)與三段式加強型固溶處理(EST, enhanced solution treatment)對AA7056(Al-9.0Zn-2.3Mg-xCu-0.05Zr)高強度鍛造型鋁合金機械性質與腐蝕性質的影響。結果顯示,合金機械強度隨Cu含量的提升而有顯著增加,然而合金在均質化後的殘留S-Al2CuMg相也將隨之增加,導致合金腐蝕電位下降,因而損害合金之抗腐蝕性質;而含低Cu之合金,雖因析出強化相η’-MgZn2相(與η-MgZn2相)析出量減少而減損了合金強度,但卻能有效減少殘留S-Al2CuMg相,因而提升了合金抗腐蝕性。
另外,相較於一段式固溶處理,當合金施以三段式加強型固溶處理,除了能提升合金之析出動力,增加強化相η’-MgZn2相(與η-MgZn2相)析出量,而強化合金外,還能顯著減少S-Al2CuMg相之數量,且晶界上η-MgZn2平衡相的Cu濃度也大幅提高,進一步提升合金晶界周圍的腐蝕電位,使得合金獲得較佳的耐腐蝕性。
綜上結果發現,含高Cu (1.9 wt%)的Al-9Zn-2.3Mg-xCu-0.05Zr合金當施以三段式加強型固溶處理,能獲得最佳機械強度與良好抗腐蝕性。且能在不發生過熱的同時,增加合金固溶溫度與加工溫度,將有助於合金熱加工速率之提升。
摘要(英) This study used microstructure observation, differential scanning calorimetry, corrosion properties and mechanical property (exfoliation corrosion, polarization corrosion, and stress corrosion resistance) tests, etc., to discuss the effects of Cu content (1.2, 1.9 wt%) and enhanced solution treatment (EST) on mechanical properties and corrosion resistance of Al-9.0Zn-2.3Mg-xCu-0.05Zr high-strength forging aluminum alloy. The results showed that the strength of the alloy increased significantly with the increasing of Cu content, which led to a decrease in the corrosion potential of the alloy, thus impairing the corrosion resistance of the alloy. However, the alloy with low Cu content reduced the strength of the alloy due to the decrease in the precipitation of the η′-MgZn2 phase (and η-MgZn2 phase), but it could effectively reduce the residual S-Al2CuMg phase. Therefore, the alloy′s corrosion resistance was improved.
In addition, compared with the single-stage solution treatment (SST), the alloy subjected to the enhanced solution treatment (EST) could not only increase the precipitation power and the precipitation of η′-MgZn2 phase (and η-MgZn2 phase) to strengthen the alloy, but also significantly reduce the S-Al2CuMg phase. The Cu concentration of the η-MgZn2 phase on the boundary was also greatly increased, which further increased the corrosion potential around the alloy grain boundary, so that the alloy had better stress corrosion resistance.
Based on the above experimental results, it was found that Al-9Zn-2.3Mg-xCu-0.05Zr alloy with high Cu content (1.9 wt%) treated with the enhanced solution treatment could obtain the best mechanical properties and good corrosion resistance. Moreover, the solid solution temperature and hot working temperature of the alloy could also increase without overheating, which would help to increase the alloy hot working rate.
關鍵字(中) ★ Al-Zn-Mg-Cu合金
★ 耐腐蝕性
★ Cu含量
★ 加強型固溶處理
關鍵字(英) ★ Al-Zn-Mg-Cu alloy
★ corrosion resistance
★ Cu content
★ enhanced solution treatment
論文目次 摘要 I
Abstract III
謝誌 V
總目錄 VI
圖目錄 IX
表目錄 XI
壹、前言與文獻回顧 1
1.1鋁合金簡介 1
1.2 AA7056合金簡介 2
1.3析出強化機制與7000系鋁合金析出強化序列 3
1.4 7000系鋁合金陽極溶解機制 6
1.5 Cu含量對7000系鋁合金機械性質與耐腐蝕性之影響 7
1.6 加強型固溶處理對7000系鋁合金機械性質與耐腐蝕性之影響 9
1.7研究目的與實驗規劃構思 13
貳、實驗步驟與方法 15
2.1合金融配 16
2.2均質化、熱輥軋與退火 17
2.3冷輥軋與T74熱處理(含一段式固溶處理(SST)與三段式加強型固溶處理(EST)) 18
2.4微結構分析 18
2.4.1導電度量測 19
2.4.2光學顯微鏡(optical microscopy, OM) 19
2.4.3電子背向散射繞射(electron backscatter diffraction, EBSD) 19
2.4.4掃描式電子顯微鏡(scanning electron microscopy, SEM) 20
2.4.5差示掃描量熱法(differential scanning calorimetry, DSC) 20
2.5腐蝕性質分析 20
2.5.1剝落腐蝕試驗 21
2.5.2極化腐蝕試驗 22
2.6機械性質分析 22
2.6.1硬度分析 22
2.6.2拉伸性質 23
2.7應力腐蝕試驗 23
參、結果與討論 24
3.1微結構分析 24
3.1.1再結晶微結構分析 24
3.1.2差示掃描量熱儀(DSC)分析 26
3.1.3導電度分析 32
3.1.4晶界析出相(η-MgZn2相)成分 33
3.2腐蝕性質(剝落腐蝕、極化腐蝕)分析 35
3.2.1剝落腐蝕試驗 35
3.2.2極化腐蝕試驗 38
3.3機械性質分析 40
3.4應力腐蝕分析 43
肆、結論 46
伍、未來研究規劃 48
陸、參考資料 49
柒、附錄 55
參考文獻 [ADL] P. N. Adler, R. Deiasi, “Calorimetric Studies of 7000 Series Aluminum Alloys:II, Comparison of 7075, 7050, and RX720 Alloys”, Metall. Trans. A,Vol. 8A, PP. 1185-1190 (1977)
[ASTM1] ASTM B918/B918M-17a, Standard Practice for Heat Treatment of Wrought Aluminum Alloy, (2017)
[ASTM2] ASTM B1558-09, Standard Guide for Electrolytic Polishing of Metallographic Specimens, (2014)
[ASTM3] ASTM G34-01, Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test) (2013)
[ASTM4] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, (2016)
[ASTM5] ASTM G129-00, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (2013)
[BIR] N. Birbilis, “Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys”, Journal of The Electrochemical Society, Vol.152, PP. 140-151 (2005)
[CHEN1] Z. Chen, Y. Mo, Z. Nie, “Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys”, Metallurgical and Materials Transactions A, Vol. 44A, PP. 3910-3921 (2013)
[CHEN2] Y. T. Chen, G. Y. Nieh, J. H. Wang, T. F. Wu, S. L. Lee, Effects of Cu/Mg ratio and heat treatment on microstructures and mechanical properties of Al-4.6Cu-Mg-0.5Ag alloys, Materials Chemistry and Physics, Vol. 162, PP. 764-770 (2015)
[CHIU] Y. C. Chiu, K. T. Du, H. Y. Bor, G. H. Liu, S. L. Lee, “The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys”, Materials Chemistry and Physics, Vol. 247, PP. 5714-5723 (2020)
[DAV] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, PP. 34-36 (2007)
[DEI] R. Deiasi, P. N. Adler, “Calorimetric Studies of 7000 Series Aluminum Alloys:I”, Matrix Precipitate Characterization of 7075”, Metall. Trans. A,Vol. 8A, PP. 1177-1183 (1977)
[DEN] Y. L. Deng, L. Wan, Y. Y. Zhang, X. M. Zhang, “Influence of Mg content on quench sensitivity of Al–Zn–Mg–Cu aluminum alloys”, Journal of Alloys and Compounds, Vol. 509, PP. 4636-4642 (2011)
[DONG] P. Dong, S. Chen, “Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy”, Journal of Alloys and Compounds, Vol. 788, PP. 329-337 (2019)
[GAL] D. B. Gallardy, “Ballistic Evaluation of 7056 Aluminum”, US Army Research Laboratory (2017)
[GOU] S. Gourdet, F. Montheillet, “An experimental study of the recrystallization mechanism during hot deformation of aluminium”, Materials Science and Engineering: A, Vol. 283, PP. 274-288 (2000)
[HAN] N. M. Han, X. M. Zhang, S. D. Liu, D. G. He, R. Zhang, “Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050”, Journal of Alloys and Compounds, Vol. 509, PP. 4138-4145 (2011)
[KNI] S. Knight, N. Birbilis, B. Muddle, A. Trueman, S. Lynch, “Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys”, Corrosion Science, Vol.52, PP. 4073-4080 (2010)
[LEE] S. L. Lee, “Engineering Materials Science Principles and Applications”, Gao Li, PP. 279-281 (2016)
[LI1] H. Li, F. Cao, S. Guo, “Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys”, Journal of Alloys and Compounds, Vol. 719, PP. 89-96 (2017)
[LI2] Z. Li, L. Chen, J. Tang, G. Zhao, C. Zhang, “Response of mechanical properties and corrosion behavior of Al–Zn–Mg alloy treated by aging and annealing: A comparative study”, Journal of Alloys and Compounds, Vol. 848 (2020)
[LIU] L. Liu, Y. Y. Jia, J. T. Jiang, B. Zhang, G. A. Li, W. Z. Shao, L. Zhen, “The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys”, Journal of Alloys and Compounds, Vol. 799, PP. 1-14 (2019)
[LLO] D. J. Lloyd, M. C. Chaturvedi, “A calorimetric study of aluminum alloy AA7075”, Journal of Materials Science., Vol. 18A, PP. 1819-1824 (1982)
[MOL] H. Möller, “Optimisation of the heat treatment cycles of CSIR semi-solid metal processed Al-7Si-Mg alloys A356/7”, Materials Science and Metallurgical Engineering of University of Pretoria, PP. 26 (2011)
[NAN] M. S. Nandana1, K. U. Bhat C. M. Manjunatha, S. B. Arya, “Electrochemical and Exfoliation Corrosion Behavior of Reversion-Treated High-Strength Aluminum Alloy”, Transactions of the Indian Institute of Metals, Vol. 73, PP. 1489-1495 (2020)
[NIE] M. Niedzinski, “Advanced Aluminum Armor Alloys“, light metal age, PP. 31 (2016)
[PAR] J. K. Park, A. J. Ardell, “Correlation between Microstructure and Calorimetric Behavior of Aluminum Alloy 7075 and AI-Zn-Mg Alloys in Various Tempers”, Materials Science and Engineering A, Vol. 114, PP. 197-203 (1989)
[PEN1] X. Peng, Y. Li, Q. Guo, G. Xu, “Effects of Enhanced Solution Treatment on Stress Corrosion Behavior of Al-Zn-Mg-Cu Alloy”, The Minerals, Metals & Materials Society, Vol. 70, PP. 2692-2697 (2018)
[PEN2] X. Peng, Yao Li, X. Liang, Q. Guo, G. Xu, Y. Peng, Z. Yin, “Precipitate behavior and mechanical properties of enhanced solution treated Al-Zn-Mg-Cu alloy during non-isothermal ageing”, Journal of Alloys and Compounds, Vol.735, PP. 964-974 (2018)
[RAO] A. C. U. Rao, V. Vasu, M. Govindaraju, K. V. S. Srinadh, “Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review “Transactions of Nonferrous Metals Society of China”, Vol. 26, Issue 6, PP. 1447-1471 (2016)
[RIO] R. M. Niedzinski, C. Rioja, “Development of ALCOA 7085 Aluminum for Ballistic and Blast Applications”, International Nordmetall Colliquium (2012)
[SAHA] P. K. Saha, and associates, “Aluminum Extrusion Technology”, ASM International Materials Park, Chapter. 7, PP. 187-190 (2000)
[SAR] B. Sarkar, M. Marek, E. A. Starke, “The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-X Cu alloys”, Metallurgical Transactions A, Vol. 12, PP. 1939–1943 (1981)
[SEM] S, L, Semiatin, and associates, “ASM Handbook : Metalworking : Bulk Forming – Extrusion of Aluminum Alloys”, ASM International Materials Park, Vol.14A, PP. 552-557 (2008)
[SHU] W. X. Shu, L. G. Hou, C. Zhang, F. Zhang, J. C. Liu, J. T. Liu, L. Z. Zhuang, J. S. Zhang, “Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al–Zn–Mg–Cu alloys”, Materials Science and Engineering: A, Vol. 657, PP. 269–283 (2016)
[SPE] M. O. Speidel, M. V. Htatt, “Advances in Corrosion Science and Technology”, Vol.2, Plenum Press, PP. 115-127 (1972)
[STA] E. A. Starke, Jr and J. T. Staley, “Application of modern aluminium alloys to aircraft”, Aerospace Sic., Vol.32, pp. 131-172 (1996)
[WANG1] Y. Wang, L. Cao, “ Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085“ Journal of Alloys and Compounds, NO.814, pp. 1-10 (2020)
[WANG2] W. Wang, Q. Pan, X. Wang, Y. Sun, J. Ye, G. Lin, S. Liu, Z. Huang, S. Xiang, X. Wang, Y. Liu, “Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultrahigh strength Al-Zn-Mg-Cu alloy”, Journal of Alloys and Compounds, Vol. 735, PP. 964-974 (2018)
[WAR] T. Warner, “Recently-developed aluminium solutions for aerospace applications”, Materials Science Forum, Vol. 519-521, PP. 1271-1278 (2006)
[XU1] D. K. Xu, P. A. Rometsch, “Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion Cracking of an As-Rolled Al-Zn-Mg-Cu Alloy”, Corrosion Science, Vol. 68 (2012)
[XU2] D. K. Xu, P. A. Rometsch, N. Birbilis, “Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part II. Microstructure and mechanical properties”, Materials Science and Engineering: A, Vol. 534, PP. 244-252 (2012)
[YUAN] D. Yuan, K. Chen, S. Chen, L. Zhou, J. Chang, L. Huang, Y. Yi, “Enhancing stress corrosion cracking resistance of low Cu containing Al-Zn-Mg-Cu alloys by slow quench rate”, Materials & Design, Vol. 164 (2019)
[ZHO] L. Zhou, K. Chen, S. Chen, Y. Ding, S. Fan, “Correlation between stress corrosion cracking resistance and grainboundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment”, Journal of Alloys and Compounds, Vol. 850 (2021)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2021-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明