博碩士論文 108329019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.216.233.58
姓名 陳品菁(Pin-Ching Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 多孔鎳集電層應用於三維微型固態超級電容器
(Nanoporous Nickel Used as Current Collectors in 3D All-Solid-State Micro-Supercapacitors)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池
★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池★ 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技發展,全球對能源依賴度逐漸增加,使化石燃料面臨短缺,因此再生能源及能源裝置的需求與重要性也日益增加。微型電容器具有良好的功率密度、快速充放電、良好的循環性能,使其被廣泛應用於儲能裝置。為了有效提升能量密度及滿足系統微小化,微型電容器的電極結構由平面2D轉變為3D結構,能在固定面積(footprint area)下提升活性材料負載量,以實現高性能超級電容器,將更適合應用於便攜式電子設備。
本研究利用二氧化錳/奈米多孔鎳材料製成高比表面積3D電極,能夠承載更多活性材料。首先透過雷射切割技術將發泡鎳(Nickel foam, NF)製備為3D指叉集電層,再將氧化鎳填充至發泡鎳大孔結構中,並透過燒結與還原形成高比表面積之奈米多孔鎳(Nanoporous-nickel, NPN)作為3D集電層,進一步利用水熱法將奈米片形貌氧化錳作為活性物質沉積於集電層上,進而製備成微型超級電容器。由SEM顯示NPN中商用發泡鎳之大孔洞結構已成功被填充且產生無數奈米孔隙,能使活性物質的質量負載由0.92 mg/cm2提升至23.8 mg/cm2。由電化學電性分析,MnO2/NPN於電流密度5 mA/cm2下比面積電容值為19.34 F/cm2,能量密度為671 μWh/cm2,比未填充之MnO2/NF性能高25倍。改良後的電極材料其優異的電化學性能歸因於NPN具有良好的導電網,及其高比表面積可提供活性材料超大負載空間,進而提升面積電容與能量密度。本研究利用簡便與低成本的方法製備出高比表面積的3D電極對微型儲能系統具有未來發展及應用的潛力。
摘要(英) With the development of science and technology, the world’s dependence on energy has gradually increased. Therefore, the needs on developing renewable energy and energy storage devices are drawing more and more research attention. Micro-supercapacitors (MSCs) possess excellent performance on power density, charging and discharging rate, and cyclic operation, making them widely used in various electronic devices. In order to achieve satisfactory energy density in miniaturized devices, the design of MSC electrode is changed from planar 2D to 3D structure. 3D structured electrode will provide higher surface area and volume for mass loading of active material within the fixed footprint area. The high-performance supercapacitors will be more suitable for applications in miniaturized electronic devices.
In this work, MnO2/nanoporous nickel (NPN) materials are used to fabricate high specific surface area 3D electrode that facilitates higher mass loading of active materials. Nickel foam (NF) is first patterned into interdigital electrode using laser cutting technique. Next, the 3D nanoporous nickel (NPN) current collector is fabricated by filling NiO powder into NF interdigital electrode, followed by sintering in air and then reduction under H2 atmosphere. Active materials composed of nanosheet manganese dioxide (MnO2) are deposited on current collector via hydrothermal reaction to prepare the MnO2/NPN interdigital electrode of all-solid-state MSC.
SEM images of NPN indicate that the pores in commercial NF have been successfully filled with nickel oxide, and the structure of electrode has transformed into nanoporous structure that possesses high specific surface area. The value of mass loading has increased from 0.92 mg/cm2 to 23.8 mg/cm2 compared to NF. The result of electrochemical analysis of MnO2/NPN shows an areal capacitance of 19.34 F/cm2 at 5 mA/cm2 current density and an energy density of 671 μWh/cm2, 25 times higher than that of MnO2/NF. The excellent electrochemical performance of MnO2/NPN’s areal capacitance and energy density can be mostly attributed to the combination of the enlarged loading area and the good electron conductive network within electrode. This study provides a simple and inexpensive method to prepare 3D electrode with high specific surface area and the performance of the MSC shows potential for future application in micro-energy storage systems.
關鍵字(中) ★ 微型超級電容器
★ 指叉電極
★ 擬電容
★ 金屬氧化物
★ 奈米多孔鎳
★ 儲能元件
關鍵字(英) ★ micro-supercapacitor
★ interdigital electrode
★ pseudocapacitor
★ metal oxide
★ nanoporous nickel
★ energy storage device
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 基本原理與文獻回顧 2
1.2.1 超級電容器簡介 2
1.2.2 超級電容器之儲能機制 4
1.2.2.1 電雙層電容器(EDLC) 5
1.2.2.2 擬電容器(Pseudocapacitor) 8
1.2.2.3 混合電容器(Hybrid supercapacitor) 10
1.2.3 超級電容之結構 11
1.2.3.1 超級電容器之電極活性材料 11
1.2.3.2 超級電容器之電解質 17
1.2.3.3 超級電容器之電極集電層 21
1.2.4 微型超級電容器(micro-supercapacitor, MSC) 22
1.2.4.1 3D架構之微型超級電容器 24
1.2.5 超級電容器之電化學分析技術 26
1.2.5.1 循環伏安法(Cyclic voltammetry, CV) 27
1.2.5.2 恆電流充放電法(Galvanostatic charge-discharge, GCD) 28
1.2.5.3 電化學交流阻抗頻譜(Electrochemical impedance spectroscopy, EIS) 29
1.3 研究動機與目的 31
第二章 實驗方法 32
2.1 實驗藥品 32
2.2 製程與分析儀器 33
2.2.1 奈秒脈衝光纖雷射(Nanosecond Pulsed Fiber Laser) 33
2.2.2 恆電位儀(Potentiostat) 34
2.2.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 34
2.2.4 X光粉末繞射儀(XRD) 35
2.3 實驗流程 36
2.4 實驗製程 37
2.4.1 指叉圖形結構設計 37
2.4.2 試片前處理 37
2.4.3 雷射雕刻製備指叉結構之3D多孔發泡鎳電極 38
2.4.4 製備3D奈米多孔鎳電極(Nanoporous nickel Current Collector) 38
2.4.5 製備奈米片MnO2活性物質 39
2.4.6 製備液態與固態電解質 39
2.4.7 製備指叉式微型固態超級電容器 39
2.4.8 電化學系統 40
第三章 結果與討論 41
3.1 材料分析 41
3.1.1 掃描電子顯微鏡分析(SEM) 41
3.1.2 X光粉末繞射儀(XRD) 48
3.2 不同MnO2質量負載之超級電容器特性分析 50
3.2.1 循環伏安與恆電流充放電分析 50
3.3 不同集電層結構之MnO2指叉式微型超級電容器特性分析 54
3.3.1 循環伏安與恆電流充放電分析 54
3.3.2 電化學交流阻抗分析 58
3.3.3 頻率響應分析 59
3.3.4 循環穩定性 62
3.3.5 固態微型超級電容器特性 63
第四章 結論 65
第五章 參考文獻 66
參考文獻 1. Dubal, D.P., P. Gomez-Romero, B.R. Sankapal, R. Holze, “Nickel cobaltite as an emerging material for supercapacitors: an overview”, Nano Energy, Vol 11, pp. 377-399, 2015.
2. Zhong, C., Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, “A review of electrolyte materials and compositions for electrochemical supercapacitors”, Chemical Society Reviews, Vol 44, pp. 7484-7539, 2015.
3. Wang, Y., J. Guo, T. Wang, J. Shao, D. Wang, Y.-W. Yang, “Mesoporous transition metal oxides for supercapacitors”, Nanomaterials, Vol 5, pp. 1667-1689, 2015.
4. Jayalakshmi, M., K. Balasubramanian, “Simple capacitors to supercapacitors-an overview”, Int. J. Electrochem. Sci, Vol 3, pp. 1196-1217, 2008.
5. Helmholtz, H.V., “Studien über electrische Grenzschichten”, Annalen der Physik, Vol 243, pp. 337-382, 1879.
6. Becker, H.I., “Low voltage electrolytic capacitor”, Google Patents, 1957.
7. Boos, D.L., “Electrolytic capacitor having carbon paste electrodes”, Google Patents, 1970.
8. 鄧名傑, 陳錦明, “超級電池超級能耐”, 科學發展, Vol 514, pp. 56-61, 2015.
9. Simon, P., Y. Gogotsi, “Materials for electrochemical capacitors”, Nanoscience technology: a collection of reviews from Nature journals, Vol, pp. 320-329, 2010.
10. Vangari, M., T. Pryor, L. Jiang, “Supercapacitors: review of materials and fabrication methods”, Journal of Energy Engineering, Vol 139, pp. 72-79, 2013.
11. González, A., E. Goikolea, J.A. Barrena, R. Mysyk, “Review on supercapacitors: Technologies and materials”, Renewable Sustainable Energy Reviews, Vol 58, pp. 1189-1206, 2016.
12. Zhang, L.L., X. Zhao, “Carbon-based materials as supercapacitor electrodes”, Chemical Society Reviews, Vol 38, pp. 2520-2531, 2009.
13. Wang, G., L. Zhang, J. Zhang, “A review of electrode materials for electrochemical supercapacitors”, Chemical Society Reviews, Vol 41, pp. 797-828, 2012.
14. Ajdari, F.B., E. Kowsari, M.N. Shahrak, A. Ehsani, Z. Kiaei, H. Torkzaban, M. Ershadi, S.K. Eshkalak, V. Haddadi-Asl, A. Chinnappan, “A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors”, Coordination Chemistry Reviews, Vol 422, pp. 213441, 2020.
15. Chuang, C.-M., C.-W. Huang, H. Teng, J.-M. Ting, “Effects of carbon nanotube grafting on the performance of electric double layer capacitors”, Energy Fuels, Vol 24, pp. 6476-6482, 2010.
16. Zhu, Z.-Z., G.-C. Wang, M.-Q. Sun, X.-W. Li, C.-Z. Li, “Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications”, Electrochimica Acta, Vol 56, pp. 1366-1372, 2011.
17. Lu, Q., J.G. Chen, J.Q. Xiao, “Nanostructured electrodes for high‐performance pseudocapacitors”, Angewandte Chemie International Edition, Vol 52, pp. 1882-1889, 2013.
18. Conway, B., W. Pell, “Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices”, Journal of Solid State Electrochemistry, Vol 7, pp. 637-644, 2003.
19. Chang, B.-Y., E. Ahn, S.-M. Park, “Real-time staircase cyclic voltammetry Fourier transform electrochemical impedance spectroscopic studies on underpotential deposition of lead on gold”, The Journal of Physical Chemistry C, Vol 112, pp. 16902-16909, 2008.
20. Rochefort, D., A.-L. Pont, “Pseudocapacitive behaviour of RuO2 in a proton exchange ionic liquid”, Electrochemistry communications, Vol 8, pp. 1539-1543, 2006.
21. Wei, M., K. Wei, M. Ichihara, H. Zhou, “Nb2O5 nanobelts: A lithium intercalation host with large capacity and high rate capability”, Electrochemistry Communications, Vol 10, pp. 980-983, 2008.
22. Augustyn, V., P. Simon, B. Dunn, “Pseudocapacitive oxide materials for high-rate electrochemical energy storage”, Energy Environmental Science, Vol 7, pp. 1597-1614, 2014.
23. Zhang, Y., H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, “Progress of electrochemical capacitor electrode materials: A review”, International journal of hydrogen energy, Vol 34, pp. 4889-4899, 2009.
24. Shao, Y., M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R. Kaner, “Design and mechanisms of asymmetric supercapacitors”, Chemical reviews, Vol 118, pp. 9233-9280, 2018.
25. Iro, Z.S., C. Subramani, S. Dash, “A brief review on electrode materials for supercapacitor”, Int. J. Electrochem. Sci, Vol 11, pp. 10628-10643, 2016.
26. Liu, C., Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density”, Nano letters, Vol 10, pp. 4863-4868, 2010.
27. Wu, Z.-S., G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage”, Nano Energy, Vol 1, pp. 107-131, 2012.
28. Jiang, J., L. Zhang, X. Wang, N. Holm, K. Rajagopalan, F. Chen, S. Ma, “Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes”, Electrochimica Acta, Vol 113, pp. 481-489, 2013.
29. Thambidurai, A., J.K. Lourdusamy, J.V. John, S. Ganesan, “Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors—a comparative investigation”, Korean Journal of Chemical Engineering, Vol 31, pp. 268-275, 2014.
30. Pekala, R., J. Farmer, C. Alviso, T. Tran, S. Mayer, J. Miller, B. Dunn, “Carbon aerogels for electrochemical applications”, Journal of non-crystalline solids, Vol 225, pp. 74-80, 1998.
31. Niu, C., E.K. Sichel, R. Hoch, D. Moy, H. Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes”, Applied physics letters, Vol 70, pp. 1480-1482, 1997.
32. Gross, J., G.W. Scherer, C.T. Alviso, R.W. Pekala, “Elastic properties of crosslinked resorcinol-formaldehyde gels and aerogels”, Journal of non-crystalline solids, Vol 211, pp. 132-142, 1997.
33. Wang, H., Q. Hao, X. Yang, L. Lu, X. Wang, “Graphene oxide doped polyaniline for supercapacitors”, Electrochemistry Communications, Vol 11, pp. 1158-1161, 2009.
34. Cheng, H. “Development of graphene-based materials for energy storage“, IEEE, in 2010 8th International Vacuum Electron Sources Conference and Nanocarbon. 2010.
35. Kuilla, T., S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, “Recent advances in graphene based polymer composites”, Progress in polymer science, Vol 35, pp. 1350-1375, 2010.
36. Ramachandran, R., V. Mani, S.-M. Chen, R. Saraswathi, B.-S. Lou, “Recent trends in graphene based electrode materials for energy storage devices and sensors applications”, Int. J. Electrochem. Sci, Vol 8, pp. 11680-11694, 2013.
37. Ramachandran, R., M. Saranya, V. Velmurugan, B.P. Raghupathy, S.K. Jeong, A.N. Grace, “Effect of reducing agent on graphene synthesis and its influence on charge storage towards supercapacitor applications”, Applied Energy, Vol 153, pp. 22-31, 2015.
38. Simon, P., Y. Gogotsi, “Materials for electrochemical capacitors”, Nanoscience technology: a collection of reviews from Nature journals, Vol, pp. 320-329, 2010.
39. Hu, C.-C., K.-H. Chang, M.-C. Lin, Y.-T. Wu, “Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors”, Nano letters, Vol 6, pp. 2690-2695, 2006.
40. Pang, S.C., M.A. Anderson, T.W. Chapman, “Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide”, Journal of the Electrochemical Society, Vol 147, pp. 444, 2000.
41. Shown, I., A. Ganguly, L.C. Chen, K.H. Chen, “Conducting polymer‐based flexible supercapacitor”, Energy Science Engineering, Vol 3, pp. 2-26, 2015.
42. Liu, N., Y. Gao, “Recent progress in micro‐supercapacitors with in‐plane interdigital electrode architecture”, Small, Vol 13, pp. 1701989, 2017.
43. 焦琛, 張衛珂, 蘇方遠, 楊宏艷, 劉瑞祥, 陳成猛, “超级電容器電極材料與電解質的研究進展”, 新型炭材料, Vol 32, pp. 106-115, 2017.
44. Verma, K.D., P. Sinha, S. Banerjee, K.K. Kar, “Characteristics of Current Collector Materials for Supercapacitors”, in Handbook of Nanocomposite Supercapacitor Materials I, Springer. p. 327-340, 2020.
45. Yang, G.F., K.Y. Song, S.K. Joo, “A metal foam as a current collector for high power and high capacity lithium iron phosphate batteries”, Journal of Materials Chemistry A, Vol 2, pp. 19648-19652, 2014.
46. Beidaghi, M., Y. Gogotsi, “Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors”, Energy Environmental Science, Vol 7, pp. 867-884, 2014.
47. Beidaghi, M., C. Wang, “Micro‐supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance”, Advanced Functional Materials, Vol 22, pp. 4501-4510, 2012.
48. Liu, L., H. Zhao, Y. Lei, “Advances on three‐dimensional electrodes for micro‐supercapacitors: a mini‐review”, InfoMat, Vol 1, pp. 74-84, 2019.
49. Shen, C., X. Wang, W. Zhang, F. Kang, “A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials”, Journal of Power Sources, Vol 196, pp. 10465-10471, 2011.
50. Zeng, Z., X. Long, H. Zhou, E. Guo, X. Wang, Z. Hu, “On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode”, Electrochimica Acta, Vol 163, pp. 107-115, 2015.
51. Beidaghi, M., C. Wang, “Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes”, Electrochimica Acta, Vol 56, pp. 9508-9514, 2011.
52. Yuan, C., L. Yang, L. Hou, L. Shen, F. Zhang, D. Li, X. Zhang, “Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors”, Journal of Materials Chemistry, Vol 21, pp. 18183-18185, 2011.
53. Chen, S.-M., R. Ramachandran, V. Mani, R. Saraswathi, “Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review”, Int. J. Electrochem. Sci, Vol 9, pp. 4072-4085, 2014.
54. Zhai, T., X. Lu, F. Wang, H. Xia, Y. Tong, “MnO2 nanomaterials for flexible supercapacitors: performance enhancement via intrinsic and extrinsic modification”, Nanoscale Horizons, Vol 1, pp. 109-124, 2016.
55. Beguin, F., E. Frackowiak, “超級電容器:材料、系統及應用”, 機械工業出版, Vol, 2014.
56. Yu, D., K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, “Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage”, Nature nanotechnology, Vol 9, pp. 555, 2014.
57. Kötz, R., M. Carlen, “Principles and applications of electrochemical capacitors”, Electrochimica acta, Vol 45, pp. 2483-2498, 2000.
58. Liu, X.-M., R. Zhang, Z. Liang, D.-H. Long, W.-M. Qiao, J.-H. Yang, L.-C. Ling, “Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte”, New Carbon Materials, Vol 22, pp. 153-158, 2007.
59. Zaidi, W., A.L. Boisset, J. Jacquemin, L. Timperman, M.R.M. Anouti, “Deep eutectic solvents based on N-methylacetamide and a lithium salt as electrolytes at elevated temperature for activated carbon-based supercapacitors”, The Journal of Physical Chemistry C, Vol 118, pp. 4033-4042, 2014.
60. 黃博, 孫現眾, 張熊, 張大成, 馬衍偉, “活性炭基軟包裝超級電容器用有機電解液”, 物理化學學报, Vol 29, pp. 1998-2004, 2013.
61. 李姿儀,“奈秒脈衝光纖雷射之精密深刻”, 機械工業雜誌, Vol, pp. 34-41, 2018.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2021-10-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明