博碩士論文 108353032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.236.52.68
姓名 李奕憲(Yi-Xian Li)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
★ 高速射出成型機自我調整控制器之設計與實現★ 全電式射出成型機之保壓改善
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究目的為加速推進低GWP環保冷媒產品R454B冷媒推行,取代原使用率最高的R410A冷媒,為滿足美國環境保護署2020年春季發布之SNAP Rule 23,選擇R454B環保冷媒進行實驗,目標大幅降低冷媒製造及使用R410A所產生的溫室氣體。實驗選擇以空調業界大宗產品-迴轉式單缸冷媒壓縮機,產品取向為美洲輕商用、家用中小型室外氣冷式分離式空調(Unitary)。
本論文實驗設備使用卡路里量熱計驗證R410A冷媒切換R454B冷媒後,壓縮機單體之製冷能力、EER、質量流量、吸入壓力、吐出壓力、吸入溫度、吐出溫度等變化。然後以壽命試驗設備驗證更換R454B冷媒後壓縮機之可靠性,證明R454B冷媒於迴轉式單缸壓縮機產品之適用性。
實驗結果證明R454B冷媒可直接取代現有R410冷媒迴轉式壓縮機產品,且與R410A冷媒使用之RB68EP冷凍油之相性佳,不須重新挑選新冷凍油重新設計終端產品。
本論文實驗結果證明現有以R410A冷媒設計開發之產品可直接以R454B冷媒取代之,既降低78%溫室氣體排放,同時可節省大量的開發成本及避免資源浪費。
摘要(英) The research purpose of this thesis is to accelerate the promotion of Low-GWP environmentally friendly refrigerant product R454B refrigerant, replace the original R410A refrigerant with the highest usage rate, and significantly reduce the greenhouse gas produced by the manufacture of R410a refrigerant.
The research purpose of this thesis is to accelerate the promotion of Low-GWP environmentally friendly refrigerant product R454B refrigerant, replace the original R410A refrigerant with the highest usage rate, and significantly reduce the greenhouse gas produced by the manufacture of R410a refrigerant.
The experimental product selection is the rotary single-cylinder refrigerant compressor, a major product in the air-conditioning industry, and the product orientation is the American light commercial, small and medium-sized outdoor air-cooled separate air-cooled air-cooled unitary for domestic use.
R454B refrigerant is one of the refrigerant with the lowest GWP value among the refrigerants that can replace R410A refrigerant products (GWP value 466, 78% lower than R410A refrigerant, and 31% lower than R32 refrigerant).
The biggest advantage of R454B refrigerant is that there is no need to change the product originally designed with R410A refrigerant, and it has only minimal impact on product performance. It means that the existing R410A product can be used directly after replacing the refrigerant with R454B refrigerant.
After the switching the R410A refrigerant with R454B of the compressor in this experiment, the cooling capacity is slightly reduced and the energy efficiency is improved. It can be used in positive displacement and direct expansion air conditioning compressor, heat pump compressors and cooling compressor.
Therefore, the experiment of this thesis chooses R454B refrigerant as the experimental target, explores the feasibility of directly replacing R410A refrigerant and the data of R454B refrigerant compressor after replacement.
The experimental equipment in this thesis uses the calorimeter to record the data changes of the compressor unit′s refrigeration capacity, EER, mass flow, suction pressure, discharge pressure, suction temperature, and discharge temperature after R410A refrigerant is switched to R454B refrigerant.
The life test equipment was then used to verify the reliability of the compressor after replacing the R454B refrigerant, thereby proving the product reliability of the R454B refrigerant used in rotary single-cylinder compressors.
The experimental results prove that R454B refrigerant can directly replace the existing R410 refrigerant rotary compressor products, and has good compatibility with the RB68EP refrigerant oil used in R410A refrigerant, so there is no need to re-select new refrigerant oil to redesign the end product.
The experimental results of this thesis prove that the existing products designed and developed with R410A refrigerant can be directly replaced with R454B refrigerant, which not only reduces 78% of greenhouse gas emissions, but also saves a lot of development costs and avoids waste of resources.
關鍵字(中) ★ R454B
★ R410a
★ 迴轉式壓縮機
關鍵字(英) ★ R454B
★ R410a
★ Rotary compressor
論文目次 目錄
頁次
中文摘要 ............................................. i
誌謝 ............................................. ii
目錄 ............................................. iii
圖目錄 ............................................. v
表目錄 ............................................. xii
符號說明 ............................................. ix
一、 緒論......................................... 1
1-1 研究背景與動機............................... 1
1-2 文獻回顧..................................... 4
1-3 論文大綱..................................... 7
二、 研究內容與方法............................... 9
2-1 冷凍空調計算公式............................. 9
2-2 冷媒介紹..................................... 12
2-3 實驗冷媒介紹................................. 21
2-4 冷媒壓縮機................................... 24
2-5 實驗方法..................................... 28
三、 實驗平台介紹................................. 33
3-1 卡路里熱量計................................. 33
3-2 壽命試驗設備................................. 48
四、 實驗結果說明及趨勢分析....................... 51
4-1 R454B取代R410A壓縮機性能測試結果及趨勢....... 51
4-2 R454B取代R410A壓縮機可靠性實驗............... 61
4-3 實驗結果分析................................. 72
五、 結論與未來展望............................... 72
參考文獻 ............................................. 73
參考文獻 〔1〕網路資料on line resources:Environment Protection Agency, “SNAP Final Rule 23”, Washington, D.C., 2021, 取自https://www.epa.gov/snap/final-rule-23-fact-sheet。
〔2〕國際製冷空調技術交流會,吉佳利修正案,國際製冷空調技術交流會,巴黎,2016年。
〔3〕Onno Kleefkens M.Sc, “Refrigerants for Heat Pump Water Heaters”, HPT-AN46-04, Report Annex 46, December 2019.
〔4〕Yuya Mizutani, Takeshi Okido, Yohei Shono and Kiyomi Sakamoto, “Development of miscibility improved oil for R32”, International Compressor Engineering Conference, Vol 1316, Purdue University, August 2018, pp. 1-7.
〔5〕Kyaw Thu, Kosei Takezato, Nobuo Takata, Takahiko Miyazaki, Yukihiro Higashi, “Performance evaluation of a heat pump system using an HFC32/HFO1234yf blend with GWP below 150 for heating applications”, Applied Thermal Engineering, Vol 182, Elsevier Ltd, August 2020, Paper 115952, pp. 1-14.
〔6〕Pierre Pardo, Michèle Mondot, “Experimental evaluation of R410A, R407C and R134a alternative refrigerants in residential heat pumps”, 17th International Refrigeration and Air Conditioning Conference, Vol 1991, Purdue University, July 2018, pp. 1-11.
〔7〕Jaime Sieres, Ignacio Ortega, Fernando Cerdeira, Estrella Álvarez, “Drop-in performance of the low-GWP alternative refrigerants R452B and R454B in an R410A liquid-to-water heat pump” , Applied Thermal Engineering, Vol 182, Elsevier Ltd, 2020, Paper 116049, pp. 1-50.
〔8〕Jianhua Wu , Hongyan Shi , Jiachen Li, “Analysis on the reliability of R290 rotary compressor in the high ambient temperature”, Applied Thermal Engineering, Vol 110, Elsevier Ltd, 2019, pp. 132-141.
〔9〕網路資料on line resources︰李魁鵬,「冷凍空調基本原理與節能」,2009年11月13日,取自https://erac.ntut.edu.tw/var/file/64/1064/img/617/136638577.pdf。
〔10〕網路資料on line resources︰林榮貴,「新世代冷媒發展現況」,2017年11月24日,取自https://km.twenergy.org.tw/KnowledgeFree/knowledge_more?id=3253。
〔11〕Paul de Larminat, Ph.D., P.E., Linzhong Wang, “OVERVIEW OF FLUIDS FOR AC APPLICATIONS”, ASHRAE JOURNAL, 2017.
〔12〕網路資料on line resources︰林孟郁和楊耀齊,「壓縮機技術發展現況與未來應用」,2010年4月,取自https://www.shs.edu.tw/works/essay/2010/04/2010040310265972.pdf。
〔13〕De-Chun Ba,Wen-Juan Deng, Shu-Gang Che, Yang Li, Hong-Xing Guo and Na Li,Xiang-Ji Yue, “Gas dynamics analysis of a rotary compressor based on CFD”, Applied Thermal Engineering, Vol 110, Elsevier Ltd, November 2015, pp. 1263-1269.
〔14〕JianhuaWu, Jiehao Hu, Ang Chen, Peipei Mei, Xingbiao Zhou and Zhenhua Chen, “Numerical analysis of temperature distribution of motor-refrigerant in a R32 rotary compressor”, Applied Thermal Engineering, Vol 95, Elsevier Ltd, May 2015, pp. 365-373.
〔15〕黃錦文、劉杰文、鄭益志、張永鹏和蔡瑞益,〈迴轉式壓縮機之設計初步〉,《冷凍與空調》,第23期,2003年10月,68 – 76頁。
〔16〕Liang Xia, Yue Chan, “Investigation of the enhancement effect of heat transfer using micro channel”, Energy Procedia, Vol 75, Elsevier Ltd, August 2015, pp. 912-918.
〔17〕C.P. Arora, McGraw-Hill, Refrigeration and Air Conditioning, 2001.
〔18〕王清伟、刘斌、董小勇、申志远和周智勇,〈不同热负荷下微通道冷凝器的运行特性〉,《低温工程》,第5期,2014年,58 – 62頁。
〔19〕管衍德、王家祐: 「工具機電力控制箱冷卻用空調設備熱傳設計之系統」,碩士論文,國立勤益科技大學,民國100年8月。
〔20〕Guobing Zhou, Yufeng Zhang, “Performance of a split-type air conditioner matched with coiledadiabatic capillary tubes using HCFC22 and HC290”, Applied energy, Vol 87, Elsevier Ltd, June 2009, pp. 1522-1528.
〔21〕Santhosh Kumar Dubba, Ravi Kumar, “Flow of refrigerants through capillary tubes: A state-of-the-art”, Experimental Thermal and Fluid Science, Vol 81, Elsevier Ltd, February 2017, pp. 370-381.
〔22〕Yulong Song, Jing Wang, Feng Cao, Pengcheng Shu, Xiaolin Wang, “Experimental investigation on a capillary tube based transcritical CO2 heat pump system”, Applied Thermal Engineering, Vol 112, Elsevier Ltd, February 2017, pp. 184-189.
〔23〕嚴嘉、童明偉和臧仁德,〈液體CO2在毛細管中質量流量特性的實驗〉,《茶葉科學》,24卷2期,2004年6月,47 – 50頁。
〔24〕蒋露和李莉,〈毛细管平面空调系统的特点及前景〉,《山西建筑》,第36卷第9期,2010年3月,190-192頁。
〔25〕张亚虎、徐德林、方忠诚和任伟,〈低噪音吹胀式蒸发器研究与应用〉,《家电科技》,美的冰箱技术研发中心,03期,2015年4月,76-79頁。
〔26〕Xiao-Hu Yang, Si-an, Yu-Jie Ding, Jing Liu, “Flow and thermal modeling and optimization of micro/mini-channelheat sink”, Applied Thermal Engineering, Vol 117, Elsevier Ltd, September 2016, pp. 289-296.
指導教授 董必正 審核日期 2022-6-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明