博碩士論文 108421030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.191.200.114
姓名 陳思諭(Ssu-Yu Chen)  查詢紙本館藏   畢業系所 企業管理學系
論文名稱 資訊探求:以電子口碑觀點探討消費者購買決策過程
(Looking for Information:Consumer′s Purchase Decision from Electronic Word of Mouth View)
相關論文
★ 共享電動機車的服務品質探討-以知覺價格為干擾變項★ 是事不關己?還是責無旁貸? 消費者對無動物實驗化妝品之購買意圖研究
★ 影響遊戲實況觀眾之黏著度研究 - 整合心流經驗與錯失恐懼觀點
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於網際網路的便利性與自由度,消費者能夠隨 意的於各個網站發表自己對某產品或服務的看法,也逐漸使得電子口碑 (electronic word of mouth, e-WOM)成為消費者決策前很重要的資訊搜集管道。而在大量的資訊下,消費者受 論點品質的影響亦或是受評論數量的影響較大,成為值得關注的議題。因此本研究利用推敲可能性模型區分電子口碑論點品質與評論數量的概念,並且整合社會影響與採用理論以釐清電子口碑對消費者之重要性,最後加入確認偏誤觀察其在論點品質對社會影響間之干擾效果更完整的解釋電子口碑影響消費者決策的過程。本研究採用網路問卷進行調查,共計回收有效問卷435份,以線性結構方程式進行研究假說之分析。本研究經由實證分析結果發現,評論總數能有效提升電子口碑產生的影響效果,也進一步證實相對於論點品質,消費者更加在意評論數量。此外,評論一致性與資訊性影響呈負相關,顯示現今消費者 對於一致性高 的評論具警覺性,內容太相似反而會遭到質疑。另一方面,確認偏誤僅在知覺訊息性對社會影響的關係中,具負向顯著的干擾作用,代表評論者 若有實際經驗且論點合理時,消費者仍會願意相信其意見具參考價值。 本研究的研究結果能夠提供學術與企業對於未來行銷策略的參考方向與建議。
摘要(英) Due to the convenience of the Internet, consumers are free to share their opinions and experience on a product or service. It makes electronic word of mouth (e-WOM) an important way to look for information for consumers before making decisions. Therefore, argument quality and review quantity which one has more influence on consumers, has become a topic worthy of our attention. This study distinguishes between argument quality and review quantity by Elaboration Likelihood Model, and integrates Social Influence and Adoption Theory to clarify the importance of e-WOM to consumers. Additionally, we test the moderating effect of confirmation bias on the relation between argument quality and social influence to explain the influence of e-WOM in purchase decision making process completely. The research model was tested with data collected from 435 potential users, and using structural equation modeling (SEM) to validate the causal relationship between variables. The results of this study were summarized as follows. The amount of reviews can effectively enhance the impact of e-WOM, which further confirms that consumers are more concerned about review quantity than argument quality. Moreover, review consistency is negatively correlated with informational influence, which shows that consumers are wary of comments with high consistency, and content that is too similar may be questioned. Besides, confirmation bias has negatively significant moderating effect on the relation between perceived informativeness and social influence. It means that consumers will still be willing to believe reviewers′ recommendations if the reviewers have practical experience and reasonable arguments. The results of this study could provide a reference on academic and practical aspects.
關鍵字(中) ★ 電子口碑
★ 推敲可能性模型
★ 社會影響
★ 採用理論
★ 確認偏誤
關鍵字(英) ★ Electronic Word of Mouth
★ Elaboration Likelihood Model
★ Social Influence
★ Adoption Theory
★ Confirmation Bias
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vi
第一章
緒論 1
1-1 研究背景與動機 1
1-2 研究目的 4
1-3 研究流程 5
第二章
文獻探討 6
2-1 電子口碑 6
2-2 論點品質 7
2-3 評論數量 9
2-4 社會影響 10
2-5 採用理論 11
2-6 確認偏誤 12
第三章
研究方法 14
3-1 研究架構與假說推論 14
3-2 研究對象與資料蒐集 19
3-3 操作型定義與問卷設計 20
3-4 統計方法分析 24
3-4-1 樣本資料分析 24
3-4-2 信度檢定 24
3-4-3 效度檢定 24
3-4-4 假設驗證 25
第四章
資料分析與研究討論 29
4-1 樣本基本資料分析 29
4-2 研究構面敘述性統計分析 32
4-3 測量模型之信效度分析 34
4-3-1 信度分析 34
4-3-2 效度分析 35
4-4 結構模型路徑分析 37
4-4-1 研究模型與模型配適度檢定 37
4-2-2 路徑分析 39
4-4-3 實證討論 41
第五章
結論 46
5-1 研究結果 46
5-2 管理意涵 47
5-2-1 學術面 47
5-2-2 實務面 48
5-2-3 政策面 49
5-3 研究限制與後續研究建議 49
參考文獻 51
附錄 問卷 65
參考文獻 1. Anderson, E. W. (1998). Customer satisfaction and word of mouth. Journal of Service Research, 1(1), 5-17.
2. Alsajjan, B., & Dennis, C. (2010). Internet banking acceptance model: cross-market examination. Journal of Business Research, 63(9), 957−963.
3. Alrabadi, D. W. H., Al-Abdallah, S. Y., & Aljarayesh, N. I. A. (2018). Behavioral biases and investment performance: Does gender matter? Evidence from Amman Stock Exchange. Jordan Journal of Economic Sciences, 5(1), 77-92.
4. Argo, J. J. (2020). A contemporary review of three types of social influence in consumer psychology. Consumer Psychology Review, 3(1), 126-140.
5. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74-94.
6. Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of online consumer reviews: Readers′ objectives and review cues. International Journal of Electronic Commerce, 17(2), 99-126.
7. Bar-Tal, Y., Brycz, H., Dolinska, B., & Dolinski, D. (2019). When saying that you are biased means that you are acurate? The moderating effect of cognitive structuring on relationship between metacognitive self and confirmation bias use. Current Psychology, 38(6), 1706-1712.
8. Bearden, W. O., & Etzel, M. J. (1982). Reference group influence on product and brand purchase decisions. Journal of consumer research, 9(2), 183-194.
9. Bhandari, M., & Rodgers, S. (2017). What does the brand say? Effects of brand feedback to negative eWOM on brand trust and purchase intentions. International Journal of Advertising, 37(1), 125–141
10. Burnkrant, R. E., & Cousineau, A. (1975). Informational and normative social influence in buyer behavior. Journal of Consumer research, 2(3), 206-215.
11. Bulut, Z. A., & Karabulut, A. N. (2018). Examining the role of two aspects of eWOM in online repurchase intention: An integrated trust–loyalty perspective. Journal of Consumer Behaviour, 17(4), 407-417.
12. Brock, T. C., & Shavitt, S. (1983). Cognitive response analysis in advertising. Advertising and consumer psychology, 91-116.
13. Browne, M. W., Cudeck, R., Bollen, K. A., & Long, J. S. (1993). Testing structural equation models. Sage.
14. BrightLocal (2019). Local Consumer Review Survey 2019. Retrieved from https://www.brightlocal.com/research/local-consumer-review-survey-2019/ (March 31, 2021)
15. Cacioppo, J. T., Petty, R. E., & Morris, K. J. (1983). Effects of need for cognition on message evaluation, recall, and persuasion. Journal of Personality and Social Psychology, 45(4), 805.
16. Cafferata, A., & Tramontana, F. (2019). A financial market model with confirmation bias. Structural Change and Economic Dynamics, 51, 252–259.
17. Chevalier, J. A., & Mayzlin, D. (2006). The effect of word of mouth on sales: Online book reviews. Journal of marketing research, 43(3), 345-354.
18. Chang, H. H., Fang, P. W. & Huang, C. H. (2015).The Impact of On-Line Consumer Reviews on Value Perception,” Journal of Organizational and End User Computing, 27(2), 32–57.
19. Chang, Y. (2018). Perceived message consistency: Explicating how brand messages being processed across multiple online media. Computers in Human Behavior, 85, 125-134.
20. Chang, H. H., Lu, Y. Y., & Lin, S. C. (2020). An elaboration likelihood model of consumer respond action to facebook second-hand marketplace: Impulsiveness as a moderator. Information & Management, 57(2), 103171.
21. Chakraborty, U., & Bhat, S. (2018). Credibility of online reviews and its impact on brand image. Management Research Review, 41(1), 148-164
22. Chen, M. Y. (2016). Can two-sided messages increase the helpfulness of online reviews?. Online Information Review, 40(3), 316-332.
23. Cheng, Y. H., & Ho, H. Y. (2015). Social influence′s impact on reader perceptions of online reviews. Journal of Business Research, 68(4), 883-887
24. Cheng, X., & Zhou, M. (2010). Study on effect of eWOM: A literature review and suggestions for future research. In 2010 International conference on management and service science. IEEE, 1-4.
25. Cheung, C. M., Lee, M. K., & Rabjohn, N. (2008). The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities. Internet Research: Electronic Networking Applications and Policy, 18(3), 229-247.
26. Cheung, M. Y., Luo, C., Sia, C. L., & Chen, H. (2009). Credibility of electronic word-of-mouth: Informational and normative determinants of on-line consumer recommendations. International journal of electronic commerce, 13(4), 9-38.
27. Cheung, C. M. Y., Sia, C. L., & Kuan, K. K. (2012). Is this review believable? A study of factors affecting the credibility of online consumer reviews from an ELM perspective. Journal of the Association for Information Systems, 13(8), 618-635.
28. Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461–470.
29. Cheung, R. (2014). The influence of electronic word-of-mouth on information adoption in online customer communities. Global Economic Review, 43(1), 42-57.
30. Chu, S. C., & Chen, H. T. (2019). Impact of consumers′ corporate social responsibility‐related activities in social media on brand attitude, electronic word‐of‐mouth intention, and purchase intention: A study of Chinese consumer behavior. Journal of Consumer Behaviour, 18(6), 453-462.
31. Cronje, A., Jacobs, B., & Retief, A. (2016). Black urban consumers’ status consumption of clothing brands in the emerging South African market. International Journal of Consumer Studies, 40(6), 754–764.
32. Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
33. Dibbets, P., & Meesters, C. (2020). Disconfirmation of confirmation bias: the influence of counter-attitudinal information. Current Psychology, 1-7.
34. Duan, W., Gu, B., & Whinston, A. B. (2008). Do online reviews matter?—An empirical investigation of panel data. Decision support systems, 45(4), 1007-1016.
35. Eagly, A.H. and Chaiken, S. (1993). The Psychology of Attitudes. Fort Worth, TX: Harcourt Brace Jovanovich.
36. Erkan, I., & Evans, C. (2016). The influence of eWOM in social media on consumers’ purchase intentions: An extended approach to information adoption. Computers in Human Behavior, 61, 47-55.
37. Fang, H., Zhang, J., Bao, Y., & Zhu, Q. (2013). Towards effective online review systems in the Chinese context: A cross-cultural empirical study. Electronic Commerce Research and Applications, 12(3), 208-220.
38. Feldman, J.M. & Lynch, J.G. (1988). Self generated validity and other effects of measurement on belief, attitude, intention, and behavior. Journal of Applied Psychology, 73, 421-435.
39. Festinger, L. (1957). A theory of cognitive dissonance (Vol. 2). Stanford university press.
40. Ferran, C., & Watts, S. (2008). Videoconferencing in the field: A heuristic processing model. Management science, 54(9), 1565-1578.
41. Filieri, R., & McLeay, F. (2014). E-WOM and accommodation: An analysis of the factors that influence travelers’ adoption of information from online reviews. Journal of Travel Research, 53(1), 44-57.
42. Filieri, R. (2016). What makes an online consumer review trustworthy?. Annals of Tourism Research, 58, 46-64.
43. Filieri, R., McLeay, F., Tsui, B., & Lin, Z. (2018). Consumer perceptions of information helpfulness and determinants of purchase intention in online consumer reviews of services. Information & Management, 55(8), 956-970.
44. Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388.
45. Fogg, B. J. (2002). Persuasive technology: using computers to change what we think and do. Ubiquity, 2002(December), 2.
46. Gharib, R. K., Garcia-Perez, A., Dibb, S., & Iskoujina, Z. (2019). Trust and reciprocity effect on electronic word-of-mouth in online review communities. Journal of Enterprise Information Management, 33(1), 120-138.
47. Greenwald, A. G. (1968). Cognitive learning, cognitive response to persuasion, and attitude change. Psychological foundations of attitudes, 147-170.
48. Gruen, T. W., Osmonbekov, T., & Czaplewski, A. J. (2006). eWOM: The impact of customer-to-customer online know-how exchange on customer value and loyalty. Journal of Business research, 59(4), 449-456.
49. Gregoriades, A., & Pampaka, M. (2020). Electronic Word of Mouth Analysis for New Product Positioning Evaluation. Electronic Commerce Research and Applications, 100986.
50. Guilford, J. P. (1966). Intelligence: 1965 model. American Psychologist, 21(1), 20.
51. Gunawan, D. D., & Huarng, K. H. (2015). Viral effects of social network and media on consumers’ purchase intention. Journal of Business Research, 68(11), 2237-2241.
52. Gu, J., Xu, Y. C., Xu, H., Zhang, C., & Ling, H. (2017). Privacy concerns for mobile app download: An elaboration likelihood model perspective. Decision Support Systems, 94, 19-28.
53. Hair, Joseph F., Jr., Rolph E. Anderson, Ronald L. Tatham, and William C. Black. (1995). Multivariate Data Analysis, 4th Edition, Englewood Cliffs, NJ: Prentice Hall.
54. Herr, P. M., Kardes, F. R., & Kim, J. (1991). Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective. Journal of consumer research, 17(4), 454-462.
55. Hennig-Thurau, T., Gwinner, K.P., Walsh, G. and Gremler, D.D. (2004). Electronic word-of-mouth via consumer-opinion platforms: what motivates consumers to articulate themselves on the Internet? Journal of Interactive Marketing, 18(1), 38-52.
56. Hill, C., Memon, A., & McGeorge, P. (2008). The role of confirmation bias in suspect interviews: A systematic evaluation. Legal and Criminological Psychology, 13(2), 357-371.
57. Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & management, 41(7), 853-868.
58. Hsu, L. C., Chih, W. H., & Liou, D. K. (2016). Investigating community members’ eWOM effects in Facebook fan page. Industrial Management & Data Systems, 116(5), 978-1004.
59. Hunt, S. D. (1976). Informational vs. persuasive advertising: An appraisal. Journal of Advertising, 5(3), 5-8.
60. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
61. Hu, N., Zhang, J., & Pavlou, P. A. (2009). Overcoming the J-Shaped Distribution of Product Reviews. Communications of the ACM, 52(10), 144-147.
62. Huang, Y., Shi, J., & Wang, L. (2012). Consumer susceptibility to interpersonal influence in Mainland China. Asian journal of social psychology, 15(2), 140-144.
63. Itzchakov, G., & Van Harreveld, F. (2018). Feeling torn and fearing rue: Attitude ambivalence and anticipated regret as antecedents of biased information seeking. Journal of Experimental Social Psychology, 75, 19–26.
64. Ismagilova, E., Slade, E. L., Rana, N. P., & Dwivedi, Y. K. (2019). The effect of electronic word of mouth communications on intention to buy: A meta-analysis. Information Systems Frontiers, 1-24.
65. James E. Bailey & Sammy W. Pearson.(1983). Development of a Tool for Measuring and Analyzing Computer User Satisfaction. Management Science, 29(5), 530-545.
66. Johnstone, M. L., & Hooper, S. (2016). Social influence and green consumption behaviour: a need for greater government involvement. Journal of Marketing Management, 32(9-10), 827-855.
67. Klapper, J.T. (1960). The Effects of Mass Communications. Free Press, Glencoe, IL.
68. Klayman, J., & Ha, Y. W. (1987). Confirmation, disconfirmation, and information in hypothesis testing. Psychological review, 94(2), 211-228.
69. Knobloch-Westerwick, S., & Kleinman, S. B. (2012). Preelection selective exposure: Confirmation bias versus informational utility. Communication research, 39(2), 170-193.
70. Knobloch-Westerwick, S., & Johnson, B. K. (2014). Selective exposure for better or worse: Its mediating role for online news′ impact on political participation. Journal of Computer-Mediated Communication, 19(2), 184-196.
71. Kristofferson, K., White, K., & Peloza, J. (2014). The nature of slacktivism: How the social observability of an initial act of token support affects subsequent prosocial action. Journal of Consumer Research, 40, 1149–1166.
72. Kumar, N., & Benbasat, I. (2006). Research note: the influence of recommendations and consumer reviews on evaluations of websites. Information Systems Research, 17(4), 425-439.
73. Lee, J., Park, D. H., & Han, I. (2008). The effect of negative online consumer reviews on product attitude: An information processing view. Electronic commerce research and applications, 7(3), 341-352.
74. Lee, K. T., & Koo, D. M. (2012). Effects of attribute and valence of e-WOM on message adoption: Moderating roles of subjective knowledge and regulatory focus. Computers in Human Behavior, 28(5), 1974-1984.
75. Lee, S., & Choeh, J. Y. (2020). Using the social influence of electronic word-of-mouth for predicting product sales: The moderating effect of review or reviewer helpfulness and product type. Sustainability, 12(19), 7952.
76. Le-Hoang, P. V. (2020). The effects of Electronic Word of Mouth (eWOM) on the adoption of consumer eWOM information. Independent Journal of Management & Production, 11(6), 1760-1777.
77. Lerman, A. E., & Acland, D. (2020). United in States of Dissatisfaction: Confirmation Bias Across the Partisan Divide. American Politics Research, 48(2), 227-237.
78. Li, C. Y. (2013). Persuasive messages on information system acceptance: A theoretical extension of elaboration likelihood model and social influence theory. Computers in Human Behavior, 29(1), 264-275.
79. Li, R., & Suh, A. (2015). Factors influencing information credibility on social media platforms: Evidence from Facebook pages. Procedia computer science, 72, 314-328.
80. Lidén, M., Gräns, M., & Juslin, P. (2019). ‘Guilty, no doubt’: detention provoking confirmation bias in judges’ guilt assessments and debiasing techniques. Psychology, Crime & Law, 25(3), 219-247.
81. Ling, R. (2020). Confirmation Bias in the Era of Mobile News Consumption: The Social and Psychological Dimensions. Digital Journalism, 1-9.
82. Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of marketing, 70(3), 74-89.
83. Liu, R. R., & Zhang, W. (2010). Informational influence of online customer feedback: An empirical study. Journal of Database Marketing & Customer Strategy Management, 17(2), 120-131.
84. Liu, C., Bao, Z., & Zheng, C. (2019). Exploring consumers’ purchase intention in social commerce. Asia Pacific Journal of Marketing and Logistics, 31(2), 378-397.
85. Lu, L. C., Chang, W. P., & Chang, H. H. (2014). Consumer attitudes toward blogger’s sponsored recommendations and purchase intention: The effect of sponsorship type, product type, and brand awareness. Computers in Human Behavior, 34, 258-266.
86. Luo, C., Luo, X. R., Xu, Y., Warkentin, M., & Sia, C. L. (2015). Examining the moderating role of sense of membership in online review evaluations. Information & Management, 52(3), 305-316.
87. Madu, C.N. & Madu, A.A. (2002). Dimensions of e-quality. International Journal of Quality and Reliability Management, 19(3), 246-58.
88. Mannes, A. E. (2009). Are we wise about the wisdom of crowds? The use of group judgments in belief revision. Management Science, 55(8), 1267-1279.
89. Meppelink, C. S., Smit, E. G., Fransen, M. L., & Diviani, N. (2019). “I was right about vaccination”: Confirmation bias and health literacy in online health information seeking. Journal of health communication, 24(2), 129-140.
90. Miller, N., Maruyama, G., Beaber, R. J., & Valone, K. (1976). Speed of speech and persuasion. Journal of personality and social psychology, 34(4), 615.
91. Mi, L., Zhu, H., Yang, J., Gan, X., Xu, T., Qiao, L., & Liu, Q. (2019). A new perspective to promote low-carbon consumption: The influence of reference groups. Ecological Economics, 161, 100-108.
92. Millner, A., Ollivier, H., & Simon, L. (2020). Confirmation bias and signaling in Downsian elections. Journal of Public Economics, 185, 104175.
93. Mousavizadeh, M., Koohikamali, M., Salehan, M., & Kim, D. J. (2020). An Investigation of Peripheral and Central Cues of Online Customer Review Voting and Helpfulness through the Lens of Elaboration Likelihood Model. Information Systems Frontiers, 1-21.
94. Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological bulletin, 105(3), 430.
95. Munzel, A. (2016). Assisting consumers in detecting fake reviews: The role of identity information disclosure and consensus. Journal of Retailing and Consumer Services, 32, 96-108.
96. Nam, K., Baker, J., Ahmad, N., & Goo, J. (2020). Dissatisfaction, disconfirmation, and distrust: An empirical examination of value co-destruction through negative electronic word-of-mouth (eWOM). Information Systems Frontiers, 22(1), 113-130.
97. Nickerson, R. (1998). Confrmation bias: A ubiquitous phenomenon in many guises. Review of General Psychology, 2, 175–220.
98. Nieboer, A. P., & Cramm, J. M. (2019). Enabling and disabling behaviors in the social environment are associated with physical activity of older people in the Netherlands. BMC public health, 19(1), 361.
99. Nisar, T. M., Prabhakar, G., Ilavarasan, P. V., & Baabdullah, A. M. (2020). Up the ante: Electronic word of mouth and its effects on firm reputation and performance. Journal of Retailing and Consumer Services, 53.
100. Nunnally, J. C., & Bernstein, I. H. (1978). Psychometric theory. McGraw-Hill, New York.
101. Park, C. W., & Lessig, V. P. (1977). Students and housewives: Differences in susceptibility to reference group influence. Journal of consumer Research, 4(2), 102-110.
102. Park, D. H., Lee, J., & Han, I. (2007). The effect of on-line consumer reviews on consumer purchasing intention: The moderating role of involvement. International journal of electronic commerce, 11(4), 125-148.
103. Park, D. H., & Kim, S. (2008). The effects of consumer knowledge on message processing of electronic word-of-mouth via online consumer reviews. Electronic commerce research and applications, 7(4), 399-410.
104. Park, C., & Lee, T. M. (2009). Antecedents of online reviews′ usage and purchase influence: An empirical comparison of US and Korean consumers. Journal of Interactive Marketing, 23(4), 332-340.
105. Park, J. S. (2012). Effects of online consumer reviews on attitudes and behavioral intentions toward products and retailers. PhD diss., University of Tennessee, 2012.
106. Park, J., Konana, P., Gu, B., Kumar, A., & Raghunathan, R. (2013). Information valuation and confirmation bias in virtual communities: Evidence from stock message boards. Information Systems Research, 24(4), 1050-1067.
107. Park, S. Y., Cho, M., & Kim, S. (2021). The effect of CSR expectancy violation: value from expectancy violation theory and confirmation bias. Journal of Marketing Communications, 27(4), 365-388.
108. Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion. In Communication and persuasion (pp. 1-24). Springer, New York, NY.
109. Peters, U. (2020). An argument for egalitarian confirmation bias and against political diversity in academia. Synthese, 1-21.
110. Price, L. L., & Feick, L. F. (1984). The role of interpersonal sources in external search: An informational perspective. Advances in Consumer Research, 11(1), 250-255.
111. Purbadharmaja, I. B. P., Setiawan, P. Y., Hayashi, T., & Widanta, A. A. B. P. (2021). How electronic word of mouth (e-WOM) triggers intention to visit through destination image, trust and satisfaction: the perception of a potential tourist in Japan and Indonesia. Online Information Review.
112. Qiu, L., Pang, J., & Lim, K. H. (2012). Effects of conflicting aggregated rating on eWOM review credibility and diagnosticity: The moderating role of review valence. Decision Support Systems, 54(1), 631-643.
113. Ratner, R. K., & Hamilton, R. W. (2015). Inhibited from bowling alone. Journal of Consumer Research, 42, 266–283.
114. Raju, G. A., & Joseph, D. (2017). An empirical investigation of online review diagnosticity. International Journal of Business Information Systems, 25(3), 319-335.
115. Rassin, E. (2020). Context effect and confirmation bias in criminal fact finding. Legal and Criminological Psychology, 25, 80-89.
116. Reichelt, J., Sievert, J., & Jacob, F. (2014). How credibility affects eWOM reading: The influences of expertise, trustworthiness, and similarity on utilitarian and social functions. Journal of Marketing Communications, 20(1-2), 65-81.
117. Reyes-Menendez, A., Saura, J. R., & Martinez-Navalon, J. G. (2019). The impact of e-WOM on hotels management reputation: exploring tripadvisor review credibility with the ELM model. IEEE Access, 7, 68868-68877.
118. Review42 (2020). Latest Online Reviews Statistics In 2020 – The Impact On Business. Retrieved from https://review42.com/resources/online-reviews-statistics/ (March 31, 2021)
119. Richins, M.L. and Root-Shaffer, T. (1988). The role of involvement and opinion leadership in consumer word-of-mouth: an implicit model made explicit. Advances in Consumer Research, 15(1), 32-6.
120. Risen, J., & Gilovich, T. (2007). Informal Logical Fallacies. Cambridge University Press, New York.
121. Santilli, P. C. (1983). The informative and persuasive functions of advertising: A moral appraisal. Journal of Business Ethics, 2(1), 27-33.
122. Sammon, R., & Kwon, K. N. (2015). Host׳ s interpersonal influence on guests in a home sales party. Journal of Retailing and Consumer Services, 23, 32-38.
123. Salehi-Esfahani, S., Ravichandran, S., Israeli, A., & Bolden III, E. (2016). Investigating information adoption tendencies based on restaurants’ user-generated content utilizing a modified information adoption model. Journal of Hospitality Marketing & Management, 25(8), 925-953.
124. Sanchez, J., Abril, C., & Haenlein, M. (2020). Competitive spillover elasticities of electronic word of mouth: an application to the soft drink industry. Journal of the Academy of Marketing Science, 48(2), 270-287.
125. Shu, M., & Scott, N. (2014). Influence of social media on Chinese students’ choice of an overseas study destination: An information adoption model perspective. Journal of Travel & Tourism Marketing, 31(2), 286-302.
126. Sia, C. L., Tan, B. C., & Wei, K. K. (1999). Can a GSS stimulate group polarization? An empirical study. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 29(2), 227-237.
127. Sigala, M., Christou, E., & Gretzel, U. (Eds.). (2012). Social media in travel, tourism and hospitality: Theory, practice and cases. Ashgate Publishing, Ltd,.
128. Sleegers, W. W., Proulx, T., & van Beest, I. (2019). Confirmation bias and misconceptions: Pupillometric evidence for a confirmation bias in misconceptions feedback. Biological psychology, 145, 76-83.
129. Smith, R. E., & Swinyard, W. R. (1988). Cognitive response to advertising and trial: Belief strength, belief confidence and product curiosity. Journal of Advertising, 17(3), 3-14.
130. Smith, S. P., Johnston, R. B., & Howard, S. (2011). Putting yourself in the picture: an evaluation of virtual model technology as an online shopping tool. Information Systems Research, 22(3), 640-659.
131. Spiegel research center (2017). Retrieved from https://spiegel.medill.northwestern.edu/online-reviews/ (April 7, 2021)
132. Statista (2019). How many reviews do you expect when looking at a product online? Retrieved from https://www.statista.com/statistics/1019495/online-shoppers-expectations-product-reviews-in-the-us/ (April 7, 2021)
133. Sussman, S. W., & Siegal, W. S. (2003). Informational influence in organizations: An integrated approach to knowledge adoption. Information systems research, 14(1), 47-65.
134. Taylor, S. E., & Brown, J. D. (1988). Illusion and well-being: a social psychological perspective on mental health. Psychological bulletin, 103(2), 193.
135. Teng, S., Khong, K. W., & Goh, W. W. (2014a). Conceptualizing persuasive messages using ELM in social media. Journal of Internet Commerce, 13(1), 65-87.
136. Teng, S., Khong, K. W., Goh, W. W., & Chong, A. Y. L. (2014b). Examining the antecedents of persuasive eWOM messages in social media. Online Information Review, 38(6), 746-768.
137. Thomas, M. J., Wirtz, B. W., & Weyerer, J. C. (2019). Determinants of online review credibility and its impact on consumers′ purchase intention. Journal of Electronic Commerce Research, 20(1), 1-20.
138. Tien, D. H., Rivas, A. A. A., & Liao, Y. K. (2019). Examining the influence of customer-to-customer electronic word-of-mouth on purchase intention in social networking sites. Asia Pacific Management Review, 24(3), 238-249.
139. Trope, Y., & Bassok, M. (1982). Confirmatory and diagnosing strategies in social information gathering. Journal of personality and social psychology, 43(1), 22-34.
140. Tran, V., & Can, T. (2020). Factors affecting the credibility of online reviews on TIKI: An assessment study in Vietnam. International Journal of Data and Network Science, 4(2), 115-126.
141. Tseng, S. Y., & Wang, C. N. (2016). Perceived risk influence on dual-route information adoption processes on travel websites. Journal of Business Research, 69(6), 2289-2296.
142. Vydiswaran, V. V., Zhai, C., Roth, D., & Pirolli, P. (2015). Overcoming bias to learn about controversial topics. Journal of the Association for Information Science and Technology, 66(8), 1655-1672.
143. Wathen, C. N., & Burkell, J. (2002). Believe it or not: Factors influencing credibility on the Web. Journal of the American society for information science and technology, 53(2), 134-144.
144. Wang, J. J., Wang, L. Y., & Wang, M. M. (2018). Understanding the effects of eWOM social ties on purchase intentions: A moderated mediation investigation. Electronic Commerce Research and Applications, 28, 54-62.
145. Wang, Y., Zhang, M., Li, S., McLeay, F., & Gupta, S. (2021). Corporate Responses to the Coronavirus Crisis and their Impact on Electronic‐Word‐of‐Mouth and Trust Recovery: Evidence from Social Media. British Journal of Management.
146. Westbrook, R. A. (1987). Product/consumption-based affective responses and postpurchase processes. Journal of Marketing Research, 24(3), 258-270.
147. Yan, Q., Wu, S., Wang, L., Wu, P., Chen, H., & Wei, G. (2016). E-WOM from e-commerce websites and social media: Which will consumers adopt?. Electronic Commerce Research and Applications, 17, 62-73.
148. Yang, Y., Park, S., & Hu, X. (2018). Electronic word of mouth and hotel performance: A meta-analysis. Tourism Management, 67, 248–260.
149. Yin, D., Mitra, S., & Zhang, H. (2016). Research note—When do consumers value positive vs. negative reviews? An empirical investigation of confirmation bias in online word of mouth. Information Systems Research, 27(1), 131-144.
150. Yuan, B., & Peluso, A. M. (2020). The impact of electronic entrepreneur-related word of mouth on brand evaluation. Journal of Brand Management, 27(5), 579-592.
151. Zhang, K. Z., Lee, M. K., & Zhao, S. J. (2010). Understanding the Informational Social Influence of Online Review Platforms. In ICIS, 71, 1-17.
152. Zhang, K. Z., Zhao, S. J., Cheung, C. M., & Lee, M. K. (2014). Examining the influence of online reviews on consumers′ decision-making: A heuristic–systematic model. Decision Support Systems, 67, 78-89.
153. Zhao, K., Stylianou, A. C., & Zheng, Y. (2018). Sources and impacts of social influence from online anonymous user reviews. Information & Management, 55(1), 16-30.
154. Zhao, H., Fu, S., & Chen, X. (2020). Promoting users’ intention to share online health articles on social media: The role of confirmation bias. Information processing & management, 57(6), 102354.
155. Zheng, Y., Zhao, K., & Stylianou, A. (2011). The formation of social influence in online recommendation systems: A study of user reviews on Amazon. com.
156. Zhou, X., Song, Q., Li, Y. Y., Tan, H., & Zhou, H. (2017). Examining the influence of online retailers’ micro-blogs on consumers’ purchase intention. Internet Research, 27(4), 819-838.
157. Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of Marketing, 74(2), 133-148.
指導教授 洪秀婉 陳德釗(Shiu-Wan Hung Der-Chao Chen) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明