參考文獻 |
[1] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques. Elsevier, 2011.
[2] I. Witten, E. Frank, and M. Hall, Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, 2011. Accessed: Nov. 04, 2020.
[3] G. E. A. P. A. Batista and M. C. Monard, “An analysis of four missing data treatment methods for supervised learning,” Appl. Artif. Intell., vol. 17, no. 5–6, pp. 519–533, May 2003.
[4] S. García, J. Luengo, and F. Herrera, “Discretization,” in Data Preprocessing in Data Mining, S. García, J. Luengo, and F. Herrera, Eds. Cham: Springer International Publishing, 2015, pp. 245–283. Accessed: Nov. 04, 2020.
[5] S. García, J. Luengo, J. A. Sáez, V. López, and F. Herrera, “A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised Learning,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 4, pp. 734–750, Apr. 2013.
[6] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data. John Wiley & Sons, 2019.
[7] J. M. Jerez et al., “Missing data imputation using statistical and machine learning methods in a real breast cancer problem,” Artif. Intell. Med., vol. 50, no. 2, pp. 105–115, Oct. 2010.
[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, Art. no. 7553, May 2015.
[9] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A survey on deep learning for big data,” Inf. Fusion, vol. 42, pp. 146–157, Jul. 2018.
[10] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships,” J. Chem. Inf. Model., vol. 55, no. 2, pp. 263–274, Feb. 2015.
[11] P. Zhang and B. Ci, “Deep belief network for gold price forecasting,” Resour. Policy, vol. 69, p. 101806, Dec. 2020.
[12] A. Ben-Hur and J. Weston, “A User’s Guide to Support Vector Machines | SpringerLink,” 2010. Accessed: Jan. 11, 2021.
[13] D. A. Bennett, “How can I deal with missing data in my study?,” Aust. N. Z. J. Public Health, vol. 25, no. 5, pp. 464–469, 2001.
[14] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data, Second Edition. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002. Accessed: Nov. 25, 2020.
[15] M. L. Brown and J. F. Kros, “Data mining and the impact of missing data,” Ind. Manag. Data Syst., vol. 103, no. 8, pp. 611–621, Jan. 2003.
[16] S. van Buuren, Flexible Imputation of Missing Data, Second Edition. CRC Press, 2018.
[17] M. R. Raymond and D. M. Roberts, “A Comparison of Methods for Treating Incomplete Data in Selection Research,” Educ. Psychol. Meas., vol. 47, no. 1, pp. 13–26, Mar. 1987.
[18] K. Strike, K. E. Emam, and N. Madhavji, “Software cost estimation with incomplete data,” IEEE Trans. Softw. Eng., vol. 27, no. 10, pp. 890–908, Oct. 2001.
[19] E. Acuña and C. Rodriguez, “The Treatment of Missing Values and its Effect on Classifier Accuracy,” Classif. Clust. Data Min. Appl., pp. 639–647.
[20] T. H. Bø, B. Dysvik, and I. Jonassen, “LSimpute: accurate estimation of missing values in microarray data with least squares methods,” Nucleic Acids Res., vol. 32, no. 3, pp. e34–e34, Feb. 2004.
[21] J. L. Schafer, Analysis of Incomplete Multivariate Data. CRC Press, 1997.
[22] E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini, “Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach,” Stat. Med., vol. 17, no. 10, pp. 1169–1186, 1998.
[23] F. K et al., “Predicting disease outcome of non-invasive transitional cell carcinoma of the urinary bladder using an artificial neural network model: results of patient follow-up for 15 years or longer,” International journal of urology : official journal of the Japanese Urological Association, Mar. 2003.
[24] J. M. Jerez-Aragonés, J. A. Gómez-Ruiz, G. Ramos-Jiménez, J. Muñoz-Pérez, and E. Alba-Conejo, “A combined neural network and decision trees model for prognosis of breast cancer relapse,” Artif. Intell. Med., vol. 27, no. 1, pp. 45–63, Jan. 2003.
[25] S. Singhal and L. Wu, “Training Multilayer Perceptrons with the Extended Kalman Algorithm,” p. 8, 1988.
[26] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958.
[27] G. Panchal, A. Ganatra, Y. P. Kosta, and D. Panchal, “Behaviour Analysis of Multilayer Perceptronswith Multiple Hidden Neurons and Hidden Layers,” Int. J. Comput. Theory Eng., pp. 332–337, 2011.
[28] E. Fix, Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties. USAF School of Aviation Medicine, 1951.
[29] A. W.-C. Liew, N.-F. Law, and H. Yan, “Missing value imputation for gene expression data: computational techniques to recover missing data from available information,” Brief. Bioinform., vol. 12, no. 5, pp. 498–513, Sep. 2011.
[30] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When Is ‘Nearest Neighbor’ Meaningful?,” in Database Theory — ICDT’99, Berlin, Heidelberg, 1999, pp. 217–235.
[31] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees. CRC press, 1984.
[32] W.-Y. Loh, “Classification and regression trees,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 1, no. 1, pp. 14–23, 2011.
[33] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1, no. 2. MIT press Cambridge, 2016.
[34] G. Hinton et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.
[35] K.-I. Funahashi, “On the approximate realization of continuous mappings by neural networks,” Neural Netw., vol. 2, no. 3, pp. 183–192, Jan. 1989.
[36] M. W. Gardner and S. R. Dorling, “Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences,” Atmos. Environ., vol. 32, no. 14, pp. 2627–2636, Aug. 1998.
[37] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep Belief Nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, May 2006.
[38] G. E. Hinton and T. J. Sejnowski, “Learning and relearning in Boltzmann machines,” Parallel Distrib. Process. Explor. Microstruct. Cogn., vol. 1, no. 282–317, p. 2, 1986.
[39] J. Karhunen, T. Raiko, and K. Cho, “Chapter 7 - Unsupervised deep learning: A short review,” in Advances in Independent Component Analysis and Learning Machines, E. Bingham, S. Kaski, J. Laaksonen, and J. Lampinen, Eds. Academic Press, 2015, pp. 125–142. Accessed: Dec. 12, 2020.
[40] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and Unsupervised Discretization of Continuous Features,” in Machine Learning Proceedings 1995, A. Prieditis and S. Russell, Eds. San Francisco (CA): Morgan Kaufmann, 1995, pp. 194–202. Accessed: Dec. 15, 2020.
[41] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, no. 5, pp. 465–471, Sep. 1978.
[42] U. Fayyad and K. Irani, “Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning,” Sep. 1993. Accessed: Dec. 19, 2020.
[43] R. Kerber, “Chimerge: Discretization of numeric attributes,” in Proceedings of the tenth national conference on Artificial intelligence, 1992, pp. 123–128.
[44] J. Chen and J. Shao, “Nearest neighbor imputation for survey data,” J. Off. Stat., vol. 16, no. 2, p. 113, 2000.
[45] P. Thanh Noi and M. Kappas, “Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery,” Sensors, vol. 18, no. 1, p. 18, 2018.
[46] P. Zhang, “Model Selection Via Multifold Cross Validation,” Ann. Stat., vol. 21, no. 1, pp. 299–313, 1993. |