博碩士論文 108521002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.218.254.122
姓名 陳盈如(Ying-Ru Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討
(Deposition of tantalum nitride thin films as the integrated resistor for single photon avalanche diodes)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析
★ 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討★ 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性
★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析
★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析
★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性
★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 常見的薄膜電阻器材料有氮化鉭 (Tantalum nitride, TaN) 及鎳鉻(Nicochrome, NiCr) 薄膜,其廣泛應用於monolithic microwave integrated circuits (MMICs)及radio-frequency integrated circuit (RFICs)等電路中;早期在CMOS製程中,TaN被用來當作抵擋銅擴散的阻擋層,因TaN長期可靠度、良好熱與化學穩定性等因素,又能與CMOS製程相容,因此近來被用來做為高精度電阻器。
本論文目的在研究TaN薄膜電阻器的材料特性,其能應用於單光子雪崩二極體元件以減少寄生電容效應。單光子雪崩二極體是將雪崩二極體元件操作在崩潰電壓以上,以光激發載子透過碰撞電離 (Impact ionization) 過程,終發生雪崩崩潰引發大電流,屬於正回饋機制,此種機制使得崩潰電荷流非常大,導致嚴重的後脈衝 (afterpulse) 問題,從而限制了計數率;飽和的電荷流也使得單光子雪崩二極體喪失了光子數目解析之能力。
以薄膜電阻與單光子雪崩二極體做單晶片整合可實現負回饋雪崩機制,使雪崩過程受到調節,並逐漸回復待測狀態。方法是在單光子雪崩二極體結構最上層覆蓋一層薄膜電阻器,藉由引入類似被動截止電路之負載電阻,達到截止電路的效果,此法與被動截止電路不同的是,一般被動截止是通過混合集成電路 (hybrid integration) ,將伴隨較大的寄生效應,導致較大的電荷流。由於一個理想的單晶片集成所產生的電荷流 (Charge flow, Q) 和空乏電容 (Depletion capacitance, Cd) 還有過量偏壓 (Exccess bias, Vex) 成正比關係,故須降低寄生電容以降低電荷量,減少SPAD後脈衝效應之影響。
我們以不同氣體流量比、腔體壓力、濺鍍瓦數去沉積多組薄膜,並藉由量測薄膜電阻率、電阻率溫度係數、XRD分析與表面形態分析方式來探討不同參數下的薄膜品質,以獲得最適合應用於單光子崩潰二極體之薄膜沉積條件。
摘要(英) The often used thin film resistor material includes tantalum nitride and nickel-chromium, which have been applied to monolithic microwave integrated circuits (MMICs) and radio-frequency integrated circuit (RFICs). In the early CMOS process, TaN was used as a barrier layer against copper diffusion. Due to the advantages of long-term reliability, good thermal and chemical stability, and compatibility with CMOS processes, TaN has been widely used as high precision resistors.
This thesis focuses on the study of the material properties of TaN thin-film resistors which can be monolithically integrated with single-photon avalanche diode (SPAD) to reduce parasitic capacitance effects. SPADs are operated above the breakdown voltage and can detect very faint light. The photon-generated carriers undergo a subsequent impact ionization process, eventually resulting a large current, which is a positive feedback mechanism. This mechanism generates substantial amount of charge flow, which can cause serious afterpulse problem, thereby limiting the counting rate. The saturated charge flow also makes the single-photon avalanche diode lose the ability of resolving the numbers of photon.
The monolithic integration of thin film resistors and SPAD can realize a negative feedback avalanche mechanism, which can regulate the avalanche process and gradually rearm the SPAD. The method is to deposit a thin film onto the top of the SPAD structure to introduce a load resistor similar to the passive quenching circuit, therefore the SPAD can be self-quenched during each avalanche. The difference between this method and the conventional passive quenching circuit (PQC) is that the PQC adopts hybrid integration which will have more serious parasitic effects, resulting in greater charge flow. Since the charge flow generated by an ideal single-chip integration is proportional to the overall capacitance and excess bias, the main task is to reduce the parasitic capacitance so as to reduce the amount of charge, and hence circumvent the afterpulsing effect.
The multiple sets of films with different gas flow ratios, chamber pressures, and sputtering power are deposited. Then we examined the film quality of different deposition parameters by film resistivity measurement, temperature coefficient of resistivity measurement, XRD analysis and surface morphology analysis to obtain the most suitable film deposition conditions for performing a high quality thin film resistor for SPADs.
關鍵字(中) ★ 單光子雪崩二極體
★ 負反饋雪崩二極體
★ 薄膜電阻器
關鍵字(英) ★ SPAD
★ NFAD
★ Thin Film Resistor
論文目次 目錄
中文摘要………………………………………………………………….i
英文摘要 Abstract……………………………………………………...iii
誌謝………………………………………………………………………v
目錄……………………………………………………………………..vii
圖目錄……………………………………………………………………x
表目錄……………………………………………………….………….xv
一、前言…………………………………………………………………1
1.1 研究背景…………………………………………………...1
1.2 論文架構…………………………………………………...2
二、負反饋雪崩二極體……………………………………………3
2.1 SPAD基本元件物理……………………………………….3
2.1.1 操作模式與I-V特性分析…………………………..3
2.1.2 蓋格模式下的崩潰機制……………………………..6
2.1.3 偵測器結構設計及電場分布………………………..9
2.2 元件操作截止電路………………………………………...10
2.2.1主動截止電路與被動截止電路…………………….10
2.2.2閘控模式電路…….………………………………….12
2.3 單片積體電路……………………………………………...14
2.3.1製造集成電阻的方法……………………………….15
2.4 負反饋雪崩二極體………………………………………...15
2.4.1瞬態載子緩衝區…………………………………….15
2.4.2薄膜電阻器集成之NFAD操作模式……………….16
2.4.3元件結構設計……………………………………….17
三、影響電阻率的原因…………………………………………..21
3.1 平均自由徑……………………………………………...21
3.2 電阻率溫度係數…………………………………………...22
3.3 馬西森定則………………………………………………...23
3.3.1 Electro-surface and sidewalls scattering…………….25
3.3.2 Grain boundary scattering………………………...26
3.3.3 Impurities scattering………………………………...28
四、 實驗儀器原理…………………………………………………..29
4.1濺鍍基本原理…………..………………………………...29
4.2 XRD操作原理…………………………..………………...30
4.3 SEM操作原理……………………………………..…….32
4.4 四點探針電阻值量測系統…………………………..…….33
4.5 原子力顯微鏡基本原理………………………………….35
五、 文獻回顧………………………..………………………………..37
六、 實驗流程與量測結果…………………………………………..46
6.1實驗流程…………….………………………………………46
6.2元件製程參數……….………………………………………48
6.2.1沉積參數………………………………………….48
6.2.2薄膜沉積速率...…………………………………….50
6.3 薄膜電阻值….…………………………………………54
6.3.1常溫之薄膜電阻值………………………………….54
6.3.2變溫之薄膜電阻值………………………………….56
6.3.3電阻率溫度係數...………………………………….60
6.4 SEM 分析…….…………………....………………...……65
6.5 AFM 分析……………..…………..………………...……71
6.6 XRD分析…………………………………………………73
6.7 晶粒尺寸…………………………………………………76
七、 結論與未來展望………………………………………………..78
參考文獻………………………………………………………………..79
參考文獻 [1] Kaibao Liu et al., "Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays." Laser & Optoelectronics Progress, 2019
[2] M. Auf der Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. Di Carlo. "Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes." Applied Physics Letters, VOL. 105, SEPTEMBER 2014
[3] K. Sugihara, E. Yagyu, and Y. Tokuda. "Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode." Journal of Applied Physics, VOL. 99, 2006.
[4] Sifang You, James Cheng, and Yu-Hwa Lo. "Physics of Single Photon Avalanche Detectors with Built-In Self-Quenching and Self-Recovering Capabilities." IEEE Joural of Quantum Electronics, VOL. 48, JULY 2012
[5] P. Kleinow, P.Kleinow, F.Rutz, R.Aidam, W.Bronner, H.Heussen, M.Walther. "Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes." Infrared Physics & Technology, VOL. 71, 2015.
[6] Xudong Jiang, Mark A Itzler, Kevin O’Donnell, Mark Entwistle, Krystyna Slomkowski. "InGaAs/InP single photon avalanche diodes with negative feedback." IEEE Photonics conference, SEPTEMBER 2012.
[7] W. Hallwachs. "Ueber den Einfluss des Lichtes auf electrostatisch geladene Körper." Annalen der Physik und Chemie, IEEE Photonics Journal VOL. 5, APRIL 2013
[8] T. S. Kuan et al., Mater. Materials Research Society, D7.1.1, 2000
[9] L. Pavesi and F. Piazza. "Temperature dependence of the InP band gap from a photolurninescence study." Phys. Rev. B, VOL. 44, OCTOBER 1991.
[10] 張世承,「砷化銦鎵/砷化鋁銦單光子崩潰二極體的設計與特性探討」,國立中央大學,碩士論文,民國107年
[11] 陳昱嘉,「砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性」,國立中央大學,碩士論文,民國108年
[12] S. Kasap, C. Koughia, H. Ruda. "Electrical Conduction in Metals and Semiconductors." SEMANTIC SCHOLAR, 2017
[13] Prof. Vladimir Bulovic et al., "Electromagnetic Energy: From Motors to Lasers." MITOPENCOURSEWARE, SPRING 2011.
[14] 楊啟榮,「濺鍍技術原理」,國立臺灣師範大學
[15] 「一秒看懂XRD基本原理」,Zi字媒體,JULY 2017.
[16] 羅聖全,「科學基礎研究之重要利器-掃描式電子顯微鏡(SEM) 」, 科學研習No.52-5,MAY 2013.
[17] 傅子豪,「微電子65奈米世代後銅薄膜阻抗係數之探討」,國立交通大學,碩士論文,民國95年
[18] G. Karve, S. Wang, F. Ma, X. Li, and J. C. Campbell. "Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes." Applied Physics Letters, VOL. 86, 2005.
[19] Gauri Vibhakar Karve. "Avalanche Photodiodes As Single Photon
Detectors." The University of Texas at Austin, PhD Dissertation, MAY 2005.
[20] Yingjie Ma et al., "Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors." Optical Express, VOL. 24, 2016.
[22] Jun Zhang, Mark A Itzler, Hugo Zbinden and Jian-Wei Pan. "Advances in InGaAs/InP single-photon detector systems for quantum communication." Science & Applications, MARCH, 2015.
[23] Hao-Yi Zhao, Naseem, Andrew H. Jones, Rui-Lin Chao, Zohauddin Ahmad, Joe C. Campbell, Jin-Wei Shi. "High-Speed Avalanche Photodiodes With Wide Dynamic Range Performance." IEEE Journal of Lightwave Technology, 2019.
[24] ZHANG Zheng-yu, SHEN Ju-nan, SHI Peng-cheng, ZHU Hong, "Micro Mechanism of Asphalt Aging Based on Nano-mechanics and Functional Groups." Journal of Highway and Transportation Research and Denelopment, 2017
[25] Xiao Meng, Chee Hing Tan, Simon Dimler, John P R David, and Jo Shien Ng. "1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature." Optics Express, VOL. 22, SEPTEMBER 2014.
[26] T. -T. Li, L. Zhou and W. -Y. Yin, "Design, Fabrication and Measurement of TaN Thin Film Resistor Based on MEMS Technology. " 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2020
[27] J. Chen et al., "Deposition of tantalum nitride films as the absorption load resistor for microwave power standard chips." 2020 Conference on Precision Electromagnetic Measurements (CPEM), 2020
[28] Alberto Tosi, Fabio Acerbi, Michele Anti, Franco Zappa. "InGaAs/InP Single-Photon Avalanche Diode With Reduced Afterpulsing and Sharp Timing Response With 30 ps Tail." IEEE Journal of Quantum Electronics, VOL. 48, SEPTEMBER 2012.
[29] Stephen Oxley. "Advances in Film Resistor Technology." 2019 TT Electronics, 2019
[30] Zhong, Q., & Liu, Z. "Wideband attenuators using distributed resistors for attenuation up to 30 dB." IEICE Electronics Express, 2016
[31] Zhang, D., Ji, L., &Kolodzey, J. "Integration of microwave termination based on TaN thin films on ferrite substrates." The European Physical Journal Applied Physics, 2015.
[32] K. Radhakrishnan, Ng Geok Ing , R. Gopalakrishnan. "Reactive sputter deposition and characterization of tantalum nitride thin films." Materials Science and Engineering, JULY 1998.
[33] Jijun Yang, Bo Liu, Yuan Wang, and Kewei Xu. "Kinetic Surface Roughening of TaN Thin Films Sputtered at Different N2/Ar Flow Ratios." International Nanoelectronics Conference, 2010.
[34] 陳貞夙,王勢輝,劉啟人,「薄膜型被動積體元件之整合—子計畫二: 被動積體元件之薄膜電阻元件開發與特性研究」,行政院國家科學委員會專題研究計畫,NOVEMBER 2003
[35] Zhang Manhong , Huo Zongliang, Wang Qin, and Liu Ming. " Material properties and effective work function of reactive sputtered TaN gate electrodes." Journal of Semiconductors, VOL.32 NO.5, MAY 2011.
[36] Huey-Ru Chen et al., "Surface scattering mechanisms of tantalum nitride thin film resistor." Nanoscale Research Letters, APRIL 2014.
[37] Kim, I.-S et al., "Degradation behaviors and failure of magnetron sputter deposited tantalum nitride." Thin Solid Films, 2020
[38] Anna Zaman and Efstathios I. Meletis. "Microstructure and Mechanical Properties of TaN Thin Films Prepared by Reactive Magnetron Sputtering." Journal Coatings, JULY 2017.
[39] Hong Shen, Ravi Ramanathan. "Fabrication of a low resistivity tantalum nitride thin film." Microelectronic Engineering, VOL 83, SEPTEMBER 2005.
[40] Bernoulli, D., Müller, U., Schwarzenberger, M., Hauert, R., & Spolenak, R. "Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition. " Thin Solid Films, 2013
指導教授 李依珊(Yi-Shan Lee) 審核日期 2021-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明