博碩士論文 108521022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.142.197.212
姓名 林秀鳳(LIN,HSIU-FENG)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析
(Fabrication and Suitable Charge Doping Studies of InGaAs/InAlAs Single Photon Avalanche Diodes)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析
★ 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討★ 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性
★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析★ 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討
★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析
★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性
★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 單光子崩潰二極體(Single-photon avalanche diode, SPAD)應用範圍很廣,從消費性電子、家用電器、車用電子、無人機涵蓋至醫療檢測儀器,都需要高精確度的光偵測器。隨著工業4.0的產業轉型以及無人化產業蓬勃,促使光學雷達的快速發展,其亟需一極為靈敏又反應快速的感測裝置,本論文所研究之雪崩單光子崩潰二極體遂相當具有潛力,可望帶來極高市場價值。
以矽材料為基礎的CMOS SPAD的開發最早也相當成熟,但由於受限於矽的能隙大小,僅能偵測可見光至近紅外光波段;為了光纖通訊的相關應用,需採用1310 nm以及1550 nm的雷射光做為光源,此波段的光對人眼視網膜的傷害相較於可見光低很多,因此本論文著力於III-V SPAD的開發;於此論文中,我們以砷化銦鎵(InGaAs)做為吸收層,但因InGaAs能隙太小,易產生穿隧效應導致漏電流,故以能隙較大的材料做為放大層,並採取吸收層與放大層分離的結構(Separation absorption, grading, charge, multiplication, SAGCM);早期多數研究皆使用磷化銦(InP)做為放大層,近年來的文獻透過計算得知砷化銦鋁(InAlAs)具有較高崩潰機率以及崩潰電壓對溫度穩定性好,因此本論文採用InAlAs做為放大層,期望能提高光偵測效率以及電壓對溫度之穩定性。
本論文比較了兩種不同元件製程結構:Double-mesa和Triple-mesa,在抑制邊緣電場上的效果,由暗電流量測結果可得知,Triple-mesa比起Double-mesa的SPAD元件有較低的暗電流,另由SPAD元件的暗計數可得知此兩種結構Triple-mesa的暗計數率也相對較低;此外,元件響應度(Responsivity)與光偵測效率(photon detection efficiency)過低,判斷係因磊晶厚度控制以及摻雜擴散的問題,吸收層沒有確實達到擊穿電場值以及放大層厚度因電荷層摻雜擴散被壓縮,故本論文亦利用Silvaco TCAD軟體以進一步調整各層最佳參數,改變了電荷層的厚度與摻雜濃度以及放大層的厚度,並維持吸收層厚度,以確認摻雜濃度擴散對元件所造成的影響;我們也透過各種參數設計,確立了電荷層厚度減少可以增加摻雜濃度浮動的可容忍範圍;換言之,一旦電荷層厚度增加,對摻雜濃度的要求就更為嚴格,這解釋了磊晶時的摻雜擴散是元件喪失單光子偵測特性的主因。
摘要(英) Single-photon avalanche diodes (SPAD) are widely used in several territories from consumer electronics, household appliances, automotive electronics, drones to medical diagnostic equipment, which all require a high sensitivity detector. The growing demand of industrial transformation of Industry 4.0 and unmanned industry facilitate the development of optical radar, also called LiDAR (light detection and ranging). An extremely sensitive and fast-response sensor is urgently needed. The SPAD studied in this study has great potential and is expected to produce high market value.
The development of CMOS SPAD based on silicon materials is quite mature, but limited by the bandgap of silicon, it can only detect the light covering from visible to near-infrared wavelength range. For the applications of optical fiber communication, 1310nm and 1550nm lasers are often used as light sources. The short-wave infrared light is less harmful to the human eye than visible light, permitting the eye-safety applications. Therefore, we focus on the development of III-V SPAD. In this study, InGaAs is used as the absorption layer, but the energy bandgap of InGaAs is small, which may cause serious tunneling effect and result high leakage current. A material with larger bandgap the should be chosen as the multiplication layer, so a typical structure of separating the absorption layer and the multiplication layer is adopted for the III-V avalanche photodiodes (APDs) or SPADs. Most of the early research used InP as the multiplication layer. In recent years, the calculations from the literature shows that InAlAs has a higher probability of breakdown and has less dependence of breakdown voltage on the temperature. Therefore, this study uses InAlAs as the multiplication layer, which is envisioned to improve the photo detection efficiency and the temperature stability of breakdown voltage.
This thesis studies the effect of mesa structures on the suppression of peripheral electric field of SPAD, and the characteristics of SPAD with double-mesa and triple-mesa structure are compared. From the dark current measurement results, it can be obtained that SPAD with triple-mesa structure has a lower dark current than SPAD with double-mesa structure. In addition, the dark count rate of SPAD with triple-mesa structure can be better suppressed. However, the responsivity and photon detection efficiency are accidentally poor, which is preliminary attributed to the issue of layer thickness control and doping diffusion during epitaxy. The epitaxy issue may cause a reduced multiplication layer thickness and incomplete depletion of the absorption layer. To further examine the possible causes of low photon detection efficiency, we calculate the electric field in the SPAD structures under several parameter settings by using Silvaco TCAD tools. By changing the thickness and doping concentration of the charge layer and the thickness of the multiplication layer, where the thickness of the absorption layer remains the same, the proper operation window between breakdown and punch-through voltage is obtained. According to the result, we can conclude that a thicker charge layer has less tolerance on the doping concentration. As a result, the thickness variation and the diffusion of the doping concentration has fatal influence on the SPAD performance.
關鍵字(中) ★ 單光子崩潰二極體
★ 砷化銦鎵 /砷化鋁銦
★ 響應率
★ 暗計數
★ 電荷層
★ 放大層
★ 三級平台
★ 摻雜
關鍵字(英) ★ single-photon avalanche diode
★ InGaAs/InAlAs
★ Responsivity
★ Dark count rate
★ Change layer
★ Multiplication
★ Triple-mesa
★ Doping
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 vii
一、前言 1
1-1單光子偵測元件 1
1-1-1光電倍增管 1
1-1-2超導體單光子偵測器 3
1-1-3單光子雪崩二極體 4
1-2研究動機及論文架構 6
二、單光子雪崩二極體 8
2-1單光子雪崩二極體特性 8
2-1-1 I-V特性分析 8
2-1-2 蓋格模式崩潰機制 9
2-2元件操作電路 11
2-2-1自由運作電路(Free running mode circuit) 11
2-2-2閘控模式電路(Gated mode circuit) 11
2-3元件特性參數介紹 13
2-3-1暗計數(Dark count rate)機制 13
2-3-2響應率(Responsivity) 16
2-3-3量子效率(Quantum Efficiency) 18
2-3-4訊號雜訊比(Single Noise Ratio) 18
三、元件設計以及製程 20
3-1元件結構 20
3-1-1 SAGCM結構介紹 21
3-2元件材料選擇 23
3-2-1吸收層材料 23
3-2-2放大層材料 24
3-3元件光罩圖案設計 26
3-4元件製程方法 28
3-4-1晶圓切割清洗 28
3-4-2曝光顯影 28
3-4-3濕蝕刻 29
3-4-4 P/N金屬製程 29
3-4-5側壁包覆層 30
3-4-6 PAD金屬製程 30
四、量測架構和結果討論 31
4-1電流與電壓量測方式 32
4-2良率與電流-電壓量測結果 34
4-2-1 打線前後室溫I-V量測 35
4-2-2 不同製程室溫I-V量測比較 37
4-2-3 變溫I-V量測 41
4-3光電流量測 43
4-3-1儀器架設方式 43
4-3-2響應度 44
4-4暗記數量測 46
4-5光計數率量測 47
4-6量測結果討論 50
伍、TCAD模擬 53
5-1模擬結構介紹及需要注意事項 53
5-2電荷層變化對元件影響 54
5-2-1電荷層厚度對電場的影響 54
5-2-2電荷層摻雜對電壓的影響 56
5-2-3電荷層厚度對電壓的影響 58
5-2-4電荷層厚度對電荷層摻雜的影響 60
5-3放大層厚度對元件影響 61
5-3-1放大層厚度對電壓的影響 61
5-3-2放大層厚度對電場的影響 62
六、結論以及未來展望 65
參考文獻 66
參考文獻 [1] Photomix tube. (2019, November 8). Retrieved from Wikipedia, Wikipedia: https://zh.wikipedia.org/w/index.php?title .E5%85%89%E7%94%E5%E5%80%8D%E5%A2%9E%E7%AE%A1-oldid=56798824
[2] 超導單光子探測技術概述. (2017,March 30). zi.media:https://zi.media/@yidianzixun/post/8szv9c
[3] Wikipedia contributors. (2021, July 2). Time of flight. In Wikipedia, The Free Encyclopedia. Retrieved 16:17, July 3, 2021, from https://en.wikipedia.org/w/index.php?title=Time_of_flight&oldid=1031518098
[4] Cao, S., Zhao, Y., ur Rehman, S. et al. Theoretical Studies onInGaAs/InAlAs SAGCM Avalanche Photodiodes. Nanoscale Res Lett 13, 158 (2018).
[5] S. Kasap, J. A. Rowlands, S. D. Baranovskii, and K. Tanioka. "Lucky drift impact ionization in amorphous semiconductors." J. Appl. Phys. vol. 96, pp.2037-2048, 2004
[6] S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, "Avalanche photodiodes and quenching circuits for single-photon detection," Appl. Opt. 35, 1956-1976 (1996)
[7] A. Panglosse, P. Martin-Gonthier, O. Marcelot, C. Virmontois, O. Saint-Pé and P. Magnan, "Dark Count Rate Modeling in Single-Photon Avalanche Diodes," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 5, pp. 1507-1515, May 2020, doi: 10.1109/TCSI.2020.2971108.
[8] WANG Wei, CHEN Ting, LI Jun-feng, HE Yong-chun, WANG Guan-yu, TANG Zheng-wei, YUAN Jun, WANG Guang. The Research of High Photon Detection Efficiency CMOS Single Photon Avalanche Diode[J]. Acta Photonica Sinica, 2017, 46(8): 823001-0823001.
[9] D. Bronzi, F. Villa, S. Tisa, A. Tosi and F. Zappa, "SPAD Figures of Merit for Photon-Counting, Photon-Timing, and Imaging Applications: A Review," in IEEE Sensors Journal, vol. 16, no. 1, pp. 3-12, Jan.1, 2016, doi: 10.1109/JSEN.2015.2483565.
[10] F. Acerbi, M. Anti, A. Tosi and F. Zappa, "Design Criteria for InGaAs/InP Single-Photon Avalanche Diode," in IEEE Photonics Journal, vol. 5, no. 2, pp. 6800209-6800209, April 2013, Art no. 6800209, doi: 10.1109/JPHOT.2013.2258664.
[11] D. Hasko, "InGaAs/InP avalanche photodiode with separated absorption, charge and multiplication layers," Proceedings of 2004 International Students and Young Scientists workshop Photonics and Microsystems, 2004., 2004, pp. 11-13, doi: 10.1109/STYSW.2004.1459925.
[12] Master.Advisor: G. Barbarino, F. T. C Barbato, "The Semiconductor Multiplication System for Photoelectrons in a Vacuum Silicon Photomultiplier Tube and Related Front End Electronics," A pioneering system for a high resolution photodetector: the VSiPMT in November 2016
[13] Ref. P. Kleinow et al, “Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes.” Infrared Physics & Technology, vol. 71, pp. 298–302, 2015.
[14] Meng X, Xie S, Zhou X, Calandri N, Sanzaro M, Tosi A et al (2016) InGaAs/InAlAs single photon avalanche diode for 1550 nm photons. R Soc Open Sci 3(3):150584
[15] Xiao Meng. "InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials." The University of Sheffield, PhD dissertation, August 2015.
[16] Yuan Yuan, Yabo Li, Joshua Abell, JiYuan Zheng, Keye Sun, Christopher Pinzone, and Joe C. Campbell, "Triple-mesa avalanche photodiodes with very low surface dark current," Opt. Express 27, 22923-22929 (2019)
[17] ZHU Shuai-yu, XIE Sheng, CHEN Yu. Design of Triple-mesa InGaAs/InP Avalanche Photodiode with Low Edge Electric Field[J]. Acta Photonica Sinica, 2018, 47(4): 423002-0423002.
[18] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi and H. Matsuzaki, "Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability," in Journal of Lightwave Technology, vol. 32, no. 8, pp. 1543-1548, April15, 2014, doi: 10.1109/JLT.2014.2308512.
[19] Chen J, Zhang Z, Zhu M, Xu J, Li X (2017) Optimization of InGaAs/InAlAs avalanche photodiodes. Nanoscale Res Lett 12(1):33
[20] Cao, Siyu, Y. Zhao, S. Feng, Y. Zuo, Lichun Zhang, B. Cheng and Chuanbo Li. “Theoretical Analysis of InGaAs/InAlAs Single-Photon Avalanche Photodiodes.” Nanoscale Research Letters 14 (2019): n. pag.

[21] Meng X, Xie S, Zhou X, Calandri N, Sanzaro M, Tosi A et al (2016) InGaAs/InAlAs single photon avalanche diode for 1550 nm photons. R Soc Open Sci 3(3):150584
[22] Meng X, Tan CH, Dimler S, David JP, Ng JS (2014) 1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature. Opt Express 22(19):22608–22615
[23] Tosi A, Calandri N, Sanzaro M, Acerbi F (2014) Low-noise, low-jitter, high detection efficiency InGaAs/InP single-photon avalanche diode. IEEE J Selected Top Quantum Electron 20(6):192–197
[24] Park C-Y, Hyun K-S, Kang SG, Kim HM (1995) Effect of multiplication layer width on breakdown voltage in InP/InGaAs avalanche photodiode. Appl Phys Lett 67(25):3789–3791
[25] J. P. R. David and C. H. Tan, "Material Considerations for Avalanche Photodiodes," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 14, no. 4, pp. 998-1009, July-aug. 2008, doi: 10.1109/JSTQE.2008.918313.
[26] T. Nakata, J. Ishihara, K. Makita and K. Kasahara, "Multiplication Noise Characterization of InAlAs-APD With Heterojunction," in IEEE Photonics Technology Letters, vol. 21, no. 24, pp. 1852-1854, Dec.15, 2009, doi: 10.1109/LPT.2009.2032783.
[27] Yingjie Ma, Yonggang Zhang, Yi Gu, Xingyou Chen, Suping Xi, Ben Du, and Hsby Li, "Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors," Opt. Express 23, 19278-19287 (2015)
[28] B. Li, Q. Lv, R. Cui, W. Yin, X. Yang and Q. Han, "A Low Dark Current Mesa-Type InGaAs/InAlAs Avalanche Photodiode," in IEEE Photonics Technology Letters, vol. 27, no. 1, pp. 34-37, 1 Jan.1, 2015, doi: 10.1109/LPT.2014.2361202.
[29] S. O. Kasap .(2011), Optoelectronics and Photonics: Principles and Practices, Prentice-Hall.
指導教授 李依珊(Yi-Shan Lee) 審核日期 2021-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明