博碩士論文 108521030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:18.117.11.194
姓名 李定洲(Ting-Chou Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 N型鎂矽錫熱電材料之製程開發
(Process Innovation of N-type Mg2(Si,Sn) Thermoelectric Materials)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 科技日新月異,石化能源帶動人類發展從工業革命至今,足以見人類社會進步的足跡,卻也造成全球暖化和能源枯竭等問題,人們迫切尋找替代能源做為新的方案。熱電材料能利用熱能,將閒置或多餘的能量轉換成電能,使得系統使用能量的效率進一步提升,此特質讓它具有成為再生能源的潛力。
本實驗透過Mg2Si和Mg2Sn粉末,經混粉、冷壓成形、退火及不銹鋼球磨,再用不同比例和不同的製程溫度合成Mg2SiSn熱電試片,以求最佳的熱電優值。最後我們製備Mg2SiSn塊材來製作模組,並量測其熱電特性。
摘要(英) With new technological advances, from the Industrial Revolution to the present, petrochemical energy has been enough to see human social progress, but it has also caused problems such as global warming and energy depletion. People are eager to find new solutions as alternative energy. Thermoelectric materials can use thermal energy to convert idle or excess energy into electrical energy, so that the efficiency of the system′s energy use is further improved. This feature gives it the potential to become a renewable energy.
In this study, Mg2Si and Mg2Sn powders were mixed, cold-pressed, annealed and stainless steel ball milled. Then, Mg2SiSn thermoelectric sample were syn-thesized with different proportions and different process temperatures to find the best thermoelectric figure of merit. Finally, we prepare Mg2SiSn bulk materials to make modules and measure thermoelectric characteristics.
關鍵字(中) ★ 熱電材料
★ 鎂矽錫
關鍵字(英) ★ Thermoelectric Materials
★ Mg2(Si,Sn)
論文目次 致謝 vi
摘要 vii
Abstract viii
目錄 ix
圖目錄 xii
表目錄 xvii
第壹章、導論 1
1-1前言 1
1-2熱電歷史 1
1-3熱電應用與前景 3
第貳章、熱電理論與文獻回顧 4
2-1前言 4
2-2熱電理論 4
2-2-1熱電優值 4
2-2-2席貝克效應 6
2-2-3功率因子 7
2-2-4熱導率 9
2-3文獻回顧 10
2-3-1 研究動機 10
2-3-2 熱電塊材的製備方法 11
2-3-3 熱電結構 13
2-3-4 鎂矽錫熱電材料 16
第參章、製程開發與量測 18
3-1前言 18
3-2矽粉摻雜 19
3-2-1氧化改善 21
3-3二元化合物 22
3-3-1 Mg2Sn材料製程 22
3-3-2 Mg2Si 材料製程 24
3-3-3 Mg2SiSn材料製程 24
3-4模組製程 25
3-5量測儀器 27
3-5-1電導率量測 27
3-5-2 席貝克係數量測 28
3-5-3 密度量測 30
3-5-4 熱擴散係數量測 31
3-5-5 比熱量測 32
3-5-6 熱導率分析 32
3-5-7 結構分析 33
3-5-8 晶體結構分析 35
3-5-9 模組電性分析 37
第肆章、實驗結果與討論 39
4-1前言 39
4-2 Mg2Si分析 39
4-2-1 Mg2Si添加額外Mg 39
4-2-2摻雜矽粉製程變因 41
4-2-3 矽粉氧化分析 42
4-2-4 Mg2Si製程設備變因 44
4-3 Mg2Sn分析 49
4-4球磨分析 52
4-5 Mg2SiSn分析 59
4-5-1 Mg2Si0.4Sn0.6在退火1小時下不同製程溫度的特性 60
4-5-2 Mg2Si0.4Sn0.6在550度縮短時間退火的特性 64
4-5-3 Mg2Si0.4Sn0.6在400度拉長時間退火的特性 67
4-5-4 Mg2Si0.4Sn0.6摻雜Sb特性分析 70
4-5-5 Mg2Si0.4Sn0.6退火48和96小時的熱電優值 73
4-6 單極熱電模組 78
第伍章、結論 81
參考資料 82
參考文獻 [1] J. Blatt, "Thermoelectric power of metals ," Springer Science & Business Media, 2012.
[2] T. E. o. E. Britannica and S. A. History. "Peltier effect." https://www.britannica.com/science/Peltier-effect (accessed.
[3] N. Gill. "What are the Seebeck, Peltier, and Thomson effects?" https://www.quora.com/What-are-the-Seebeck-Peltier-and-Thomson-effects (accessed.
[4] R. R. Heikes and R. W. Ur, "Thermoelectricity: Science and Engineering" Interscience Publishers, (1961); I. B. Cadoff and E. Miller "Thermoelectric Materials and Devices" Materials Technology Series. Reinhold Publishing Cooperation (1960); P. H. Egli "Thermoelectricity" John Wiley & Sons (1960).
[5] M. V. Vedernikov and E. K. Iordanishvili "A. F. Ioffe and origin of modern semiconductor thermoelectric energy conversion" 17th Int. Conf. on Thermoelectrics vol 1, pp 37–42 (1998) ; A. F. Ioffe "Semiconductor Thermoelements and Thermoelectric Cooling"
[6] H. J. Goldsmid and R. W. Douglas "The use of semiconductors in thermoelectric refrigeration" British J. Appl. Phys. 5, 386, 1954.
[7] Jian He, Terry M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward. Science, vol. 357, issue 6358, eaak9997, doi: 10.1126/science.aak9997.
[8] Chen,Yang Yuan、Chen, C. L.“The Application of Thermoelectricity in Renewable Energy,”Physics Bimonthly, 2020.
[9] Wu, H. J.、Deng, P. Y.、Yen, W. T.、Tsai, I. F.“Research and Application of Thermoelectric Material Phase Diagram,”Industrial Materials, pp. 23-32, 2019.
[10] D.M. Rowe, "Thermoelectrics Handbook-Macro to Nano," 2006.
[11] Liao, Chien-Neng,“Research Status of Medium and High Temperature Thermoelectric Materials,”Industrial Materials, 2019.
[12] Stefano Meroli, "Czochralski process vs Float Zone: two growth techniques for mono-crystalline silicon".
[13] M. Tokita, "Mechanism of Spark Plasma Sintering, "J. Soc. Powder Tech. Jpn., 30, 790, 1993.
[14] A. Sharan, "Formation of two-dimensional electron and hole gases at the interface of half-Heusler semiconductors".
[15] G. Schierning, "Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: a review of selected materials and basic considerations of module design".
[16] G. J. Synder and E. S. Toberer, "Complex thermoelectric materials", Nature Materials, Vol. 7, pp. 105-114, 2008.
[17] J. Dong, K. Yang, B. Xu, L. Zhang, Q. Zhang and Y. Tian, "Structure and thermoelectric properties of Se- and Se/Te-doped CoSb3 skutterudites 156 synthesized by high-pressure technique", Journal of Alloys and Compounds, Vol. 647, pp. 295-302, 2015.
[18] Gabi Schierning at al., "Concepts for medium-high to high temperature thermoelectric heat-to-electricity conversion: areview of selected materials and basic considerations of module design", IOPscience, 2015.
[19] Y. X. W. and L. "Yan, Mg2Sn: a potential mid-temperature thermoelectric material".
[20] J. Wei Liu, Minghui Song, Masaki Takeguchi, Naohito Tsujii, and Yukihiro Isoda, “Transmission Electron Microscopy Study of Mg2Si0.5Sn0.5 Solid Solution for High-Performance Thermoelectrics,” J. Electron. Mater. 44, 1, 2015.
[21] H. Kamila, “Analyzing transport properties of p-type Mg2Si–Mg2Sn solid solutions: optimization of thermoelectric performance and insight into the electronic band structure”.Journal of Materials Chemistry A.
[22] X. Zhang, “Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping”.Applied Physics Letters.
[23] R. B. Song, T. Aizawa , J. Q. Sun, “Synthesis of Mg2Si1−xSnx solid solutions asthermoelectric materials by bulk mechanical alloying and hot pressing,” Mater.Sci. Eng. B, 136 , 111-117, 2007.
[24] Sin-Wook You, Il-Ho Kim, Soon-Mok Choi, and Won-Seon Seo, “Solid-State Synthesis and Thermoelectric Properties of Mg2+xSi0.7Sn0.3Sbm,”
J. Nanomater, 2013.
[25] J. Wei Liu, Minghui Song, Masaki Takeguchi, Naohito Tsujii, and Yukihiro Isoda,“Transmission Electron Microscopy Study of Mg2Si0.5Sn0.5 Solid Solution for High-Performance Thermoelectrics,”J. Electron. Mater. 44, 1, 2015.
[26] W. P. M. a. A. W. dos Santos, “Thermal diffusivity of polymers by the laser flash technique,”Polymer testing, pp. p. 628-634.
[27] P. T. M. a. B. R. Gill, Differential scanning calorimetry techniques: applications in biology and nanoscience.
[28] Lin,C.J.、Lo,S.C.“Introduction of Field Emission Scanning Electron Microscopy,”Industrial Materials, Vol. 201, pp. 90-98, 2003.
[29] “Use X-ray to see through the world of material atomic arrangement structure,”National Applied Research Laboratories.
[30] Peng Gao et al.,“Reduced lattice thermal conductivity in Bi-doped Mg2Si0.4Sn0.6,”AIP, 2014.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明