博碩士論文 108521032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:18.116.15.3
姓名 游欣容(Xin-Rong You)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 挖洞式無金歐姆接觸之氮化鎵高電子遷移率電晶體
(Au-free Ohmic Contacts in GaN-based HEMTs by Recessed Patterns)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文針對挖洞式無金氮化鎵歐姆接觸研究,再應用到氮化鎵高電子遷移率電晶體進行電性探討與研究。研究包含磊晶片材料分析、元件的設計與製作、直流電性與動態特性分析以及Silvaco TCAD的模擬。
對於氮化鋁鎵/氮化鎵之磊晶片而言,先回顧金歐姆接觸之氮化鋁鎵/氮化鎵高電子遷移率電晶體之歐姆接觸、直流電性以及動態特性討論。根據結果顯示,在挖洞深度以及挖洞圖形為5.5 nm與1/3/5 μm的條件下,可獲得最佳之歐姆接觸電阻(RC = 0.89 Ω∙mm);以此條件製作挖洞式金歐姆接觸之氮化鋁鎵/氮化鎵高電子遷移率電晶體並與無挖洞式金歐姆接觸之電晶體進行電性比較。結果顯示挖洞式設計降低歐姆接觸電阻可使元件直流特性獲得改善,但在動態特性方面則出現嚴重的電流崩塌現象。採用無金歐姆金屬搭配低溫(550 ℃)熱退火的方式製作之歐姆接觸,並進行元件直流電性以及動態特性分析。結果顯示,在挖洞深度以及挖洞圖形為27.5 nm與1/3/5 μm的條件下,可獲得最佳之歐姆接觸電阻(RC = 0.98 Ω∙mm),並以此條件製作挖洞式無金歐姆接觸之氮化鋁鎵/氮化鎵高電子遷移率電晶體,結果呈現相比挖洞式金歐姆接觸之電晶體,改善了元件崩潰電壓特性以及電流崩塌的問題。研究顯示無金歐姆金屬搭配低溫熱退火不僅解決了原本含金製程之CMOS元件製程流程不兼容的問題,還可以改善元件特性。此外,對於具備低片電阻之氮化鋁銦鎵/氮化鎵(AlInGaN/GaN)磊晶片而言,1/3/5 μm的挖洞式圖形亦可獲得最佳歐姆接觸電阻(RC = 1.14 Ω∙mm),以此條件製作挖洞式無金歐姆接觸之電晶體,並進行電性分析。
摘要(英) This paper focuses on the study of the Au-free recessed ohmic contact GaN, and then applies it to the GaN HEMTs for electrical discussion and research. The research includes epitaxy structures material, device fabrication, electrical analysis, and Silvaco TCAD simulation.
For AlGaN/GaN epitaxial structures, this study reviews the ohmic contact, electrical characteristics analysis results of Au-based AlGaN/GaN HEMT. The best ohmic contact resistance (RC = 0.89 Ω∙mm) can be obtained under the conditions of the recess depth and the recess pattern are 5.5 nm and 1/3/5 μm, and make Au-based recessed ohmic contact AlGaN/GaN HEMT under this condition and compare with Au-based non-recessed ohmic contact AlGaN/GaN HEMT. The results show that the recess pattern design reduces the ohmic contact resistance to improve the electrical characteristics, but there is a serious current collapse in the dynamic characteristics. Therefore, this study uses Au-free ohmic metal with 550 ℃ low annealing temperature to explore the analysis of ohmic contact and electrical characteristics. According to the results, the best ohmic contact resistance (RC = 0.98 Ω∙mm) can be obtained when the recess depth and the recess pattern are 27.5 nm and 1/3/5 μm, and the Au-free recessed ohmic contact AlGaN/GaN HEMT is fabricated under this condition. The results show that compared to the Au-based recessed ohmic contact HEMTs, the problems of device breakdown voltage characteristics and current collapse are improved. The research has shown that Au-free ohmic metal with low annealing temperature not only solves the problem of CMOS technology incompatibility but also improves the problem of device characteristics.
In addition, for AlInGaN/GaN epitaxial structure with low sheet resistance, a recess pattern of 1/3/5 μm can also obtain the best ohmic contact resistance (RC = 1.14 Ω∙mm), and the Au-free recessed ohmic contact AlInGaN/GaN HEMT is fabricated under this condition for electrical analysis.
關鍵字(中) ★ 氮化鎵
★ 高電子遷移率電晶體
★ 挖洞式無金歐姆接觸
★ 降低導通電阻
關鍵字(英)
論文目次 摘要 ix
Abstract x
致謝 xi
目錄 xii
圖目錄 xv
表目錄 xx
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵材料之極化特性 3
1.3 高電子移動率電晶體(HEMT)發展概況 5
1.3.1 傳統式歐姆接觸 8
1.3.2 重新生長式歐姆接觸 10
1.3.3 離子佈植式歐姆接觸 13
1.3.4 挖洞式歐姆接觸 15
1.3.5 無金式歐姆接觸 18
1.4 研究動機與目的 21
1.5 論文架構 22
第二章 二種不同能障層GaN HEMTs之磊晶結構與 材料分析 23
2.1 AlGaN/GaN HEMTs與AlInGaN/GaN HEMTs之磊晶結構 23
2.2 AlGaN/GaN HEMTs與AlInGaN/GaN HEMTs之材料分析 26
2.2.1 傳輸線模型量測 26
2.2.2 霍爾量測 28
2.2.3 垂直崩潰電壓量測之探討與分析 28
2.2.4 水平崩潰電壓量測之探討與分析 30
2.3 挖洞式無金歐姆接觸之電晶體佈局 32
2.4 元件製作流程 34
2.5 總結 38
第三章 挖洞式歐姆接觸之AlGaN/GaN HEMT元件 模擬及電性量測分析 39
3.1 Au-based AlGaN/GaN HEMT特性回顧 39
3.1.1 元件製作流程 39
3.1.2 直流特性研究結果 40
3.1.3 動態特性分析 43
3.2 Au-free AlGaN/GaN HEMT之歐姆接觸分析 45
3.2.1 蝕刻深度對歐姆接觸電阻的影響 45
3.2.2 底層鈦金屬厚度對歐姆接觸電阻的影響 46
3.2.3 熱退火溫度對歐姆接觸電阻的影響 47
3.2.4 挖洞式圖形對歐姆接觸電阻的影響 48
3.3 Au-free AlGaN/GaN HEMT之直流特性分析 49
3.3.1 電流-電壓特性分析 50
3.3.2 崩潰電壓特性分析 53
3.3.3 歐姆接觸之動態特性分析 56
3.3.4 動態特性分析 58
3.4 元件模擬特性 63
3.5 總結 68
第四章 挖洞式無金歐姆接觸之AlInGaN/GaN HEMT元件電性量測分析 69
4.1 歐姆接觸電阻分析 69
4.1.1熱退火溫度對歐姆接觸電阻的影響 70
4.1.2 挖洞式圖形對歐姆接觸電阻的影響 70
4.2 元件直流特性分析 72
4.2.1 電流-電壓特性分析 73
4.2.2崩潰電壓特性分析 75
4.3 動態特性分析 77
4.3.1 歐姆接觸之動態特性分析 78
4.3.2 動態特性分析 79
4.4 總結 81
第五章 結論 82
參考文獻 83
附錄 Ⅰ 陳智偉碩士論文資料參考 89
附錄 Ⅱ Au-free AlGaN/GaN HEMTs以及AlInGaN/GaN HEMTs製程流程 94
附錄 Ш Au-based AlGaN/GaN HEMTs製程流程 98
Publication List/Acknowledgement 102
參考文獻 [1] B. J. Baliga, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Lett., vol. 39, no. 4, pp. 455-457, Oct. 1989, doi: 10.1109/55.43098
[2] M. F. Fatahilah, K. Strempel, F. Yua, S. Vodapally, A. Waag, and H. S. Wasistoa, “3D GaN nanoarchitecture for field-effect transistors,” Micro and Nano Engineering. vol. 3, pp. 59-81, May. 2019, doi: 10.1016/j.mne.2019.04.001
[3] F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450-457, Mar. 2001, doi: 10.1109/16.906435
[4] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, Mar. 1999, doi: 10.1063/1.369664
[5] N. Kaminski, and O. Hilt, “SiC and GaN devices – wide bandgap is not all the same,” Power semiconductor devices and integrated circuits, vol. 8, no. 3, pp. 227-236, May. 2014, doi: 10.1049/iet-cds.2013.0223
[6] B. Benakaprasad, A. M. Eblabla, X. Li, K. G. Crawford, and K. Elgaid, “Optimization of Ohmic contact for AlGaN/GaN HEMT on low-resistivity silicon,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 863-868, Mar. 2020, doi: 10.1109/TED.2020.2968186
[7] L. Wang and F. M. Mohammed, “Differences in the reaction kinetics and contact formation mechanisms of annealed Ti∕Al∕Mo∕Au ohmic contacts on n-GaN and AlGaN∕GaN epilayers,” J. Appl. Phys., vol. 101, no. 1, Jan. 2007, doi: 10.1063/1.2402791
[8] C. Wang, S. J. Cho, and N. Y. Kim, “Optimization of Ohmic contact metallization process for AlGaN/GaN high electron mobility transistor,” Trans. on Electrical and Electronic Materials, vol. 14, no. 1, pp. 32-35, Feb. 2013, doi: 10.4313/TEEM.2013.14.1.32
[9] T. Yoshida and T. Egawa, “Improvement of Au-free, Ti/Al/W Ohmic contact on AlGaN/GaN heterostructure featuring a thin-Ti layer and low temperature annealing,” Phys. Status Solidi A, vol. 215, no. 13, Feb. 2018, doi: 10.1002/pssa.201700825
[10] N. S, I. Guiney, C. J. Humphreys, P. Sen, R. Muralidharan, and D. N. Nath, “Au-free recessed Ohmic contacts to AlGaN/GaN high electron mobility transistor: Study of etch chemistry and metal scheme,” J. Vac. Sci. Technol. B, vol. 38, no. 3, Apr. 2020, doi: 10.1116/1.5144509
[11] H. S. Lee, D. S. Lee, and T. Palacios, “AlGaN/GaN high-electron-mobility transistors fabricated through a Au-free technology,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 623-625, May 2011, doi: 10.1109/LED.2011.2114322
[12] B. D. Jaeger, M. V. Hove, D. Wellekens, X. Kang, H. Liang, G. Mannaert, K. Geens, and S. Decoutere, “Au-free CMOS-compatible AlGaN/GaN HEMT processing on 200 mm Si substrates,” IEEE Int Symp. Power Semicond. Device IC’s, Jun. 2012, doi: 10.1109/ISPSD.2012.6229020
[13] J. Zhang, X. Kang, X. Wang, S. Huang, C. Chen, K. Wei, Y. Zheng, Q. Zhou, W. Chen, B. Zhang, and X. Liu, “Ultralow-contact-resistance Au-free Ohmic contacts with low annealing temperature on AlGaN/GaN heterostructures,” IEEE Electron Device Lett., vol. 39, no. 6, pp. 847-850, Jun. 2018, doi: 10.1109/LED.2018.2822659
[14] A. Shriki1, R. Winter, Y. Calahorra, Y. Kauffmann, G. Ankonina, M. Eizenberg, and D. Ritter, “Formation mechanism of gold-based and gold-free ohmic contacts to AlGaN/GaN heterostructure field effect transistors,” J. Appl. Phys., vol. 121, no. 6, Jan. 2017, doi: 10.1063/1.4975473
[15] J. Zhang, S. Huang, Q. Bao, X. Wang, K. Wei, Y. Zheng, Y. Li, C. Zhao, X. Liu, Q. Zhou, W. Chen, and B. Zhang, “Mechanism of Ti/Al/Ti/W Au-free ohmic contacts to AlGaN/GaN heterostructures via pre-ohmic recess etching and low temperature annealing,” Appl. Phys. Lett., vol. 107, no. 26, Dec. 2015, doi: 10.1063/1.4939190
[16] H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, “Mechanisms of current collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors,” J. Vac. Sci. Technol. B, vol. 21, no. 4, Dec. 2003, doi: 10.1116/1.1589520
[17] R. Wang, G. Li, J. Guo, B. Song, J. Verma, Z. Hu, Y. Yue, K. Nomoto, S. Ganguly, S. Rouvimov, X. Gao, O. Laboutin, Y. Cao, W. Johnson, P. Fay, D. Jena, and H. G. Xing, “Dispersion-free operation in InAlN-based HEMTs with ultrathin or no passivation,” IEDM, Dec. 2013, doi: 10.1109/IEDM.2013.6724712
[18] H. Y. Guo, Y. J. Lv, G. D. Gu, S. B. Dun, Y. L. Fang, Z. R. Zhang, X. Tan, X. B. Song, X. Y. Zhou and Z. H. Feng, “High-frequency AlGaN/GaN high-electron-mobility transistors with regrown Ohmic contacts by metal-organic chemical vapor deposition,” Chinese Phys. Lett., vol. 32, no. 11, Jul. 2015, doi: 10.1088/0256-307X/32/11/118501
[19] D. F. Brown, K. Shinohara, A. L. Corrion, R. Chu, A. Williams, J. C. Wong, I. A. Rodriguez, R. Grabar, M. Johnson, C. M. Butler, D. Santos, S. D. Burnham, J. F. Robinson, D. Zehnder, S. J. Kim, T. C. Oh, and M. Micovic “High-Speed, Enhancement-Mode GaN Power Switch With Regrown n+ GaN Ohmic Contacts and Staircase Field Plates,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1118-1120, Sep. 2013, doi: 10.1109/LED.2013.2273172
[20] S. Dasgupta, Nidhi, D. F. Brown, F. Wu, S. Keller, J. S. Speck, and U. K. Mishra “Ultralow nonalloyed Ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth,” Appl. Phys. Lett., vol. 96, no. 14, Jan. 2010, doi: 10.1063/1.3374331
[21] K. Shinohara, D. Regan, A. Corrion, D. Brown, S. Burnham, P.J. Willadsen, I. A.-Rodriguez, M. Cunningham, C. Butler, A. Schmitz, S. Kim, B. Holden, D. Chang, V. Lee, A. Ohoka, P. M. Asbeck, and M. Micovic “Deeply-scaled self-aligned-gate GaN DH-HEMTs with ultrahigh cutoff frequency,” IEDM, Jan. 2012, doi: 10.1109/IEDM.2011.6131582
[22] H. Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, J. Speck, and U. Mishra, “Ion implanted AlGaN–GaN HEMTs with nonalloyed Ohmic contacts,” IEEE Electron Device Lett., vol. 26, no. 5, pp. 283-285, May 2005, doi: 10.1109/LED.2005.846583
[23] F. Recht, L. McCarthy, S. Rajan, A. Chakraborty, C. Poblenz, A. Corrion, J. S. Speck, and U. K. Mishra, “Nonalloyed Ohmic contacts in AlGaN/GaN HEMTs by Ion implantation with reduced activation annealing temperature,” IEEE Electron Device Lett., vol. 27, no. 4, pp. 205-207, Apr. 2006, doi: 10.1109/LED.2006.870419
[24] K. Han, “Employing hole-array recess of barrier layer of AlGaN/GaN heterostructures to reduce annealing temperature of Ohmic contact,” Semicond. Sci. Technol., vol. 32, no. 10, Sep. 2017, doi: 10.1088/1361-6641/aa867f
[25] Y. Lu, X. Ma, L. Yang, B. Hou, M. Mi, M. Zhang, J. Zheng, H. Zhang, and Y. Hao, “High RF performance AlGaN/GaN HEMT fabricated by recess-arrayed Ohmic contact technology,” IEEE Electron Device Lett., vol. 39, no. 6, pp. 811-814, Jun. 2018, doi: 10.1109/LED.2018.2828860
[26] Y. Takei, M. Kamiya1, K. Tsutsui, W. Saito, K. Kakushima, H. Wakabayashi, Y. Kataoka, and H. Iwai, “Reduction of contact resistance on AlGaN/GaN HEMT structures introducing uneven AlGaN layers,” Phys. Status Solidi A, vol. 212, no. 5, pp. 1104-1109, Feb. 2015, doi: 10.1002/pssa.201431645
[27] S. S. Mahajan, A. Dhaul, R. Laishram, S. Kapoor, S. Vinayak, and B. K. Sehgal, “Micro-structural evaluation of Ti/Al/Ni/Au ohmic contacts with different Ti/Al thicknesses in AlGaN/GaN HEMTs,” Materials Science and Engineering: B, vol. 183, pp. 47-53, Feb. 2014, doi: 10.1016/j.mseb.2013.12.005
[28] B. Song, M. Zhu, Z. Hu, M. Qi, K. Nomoto, X. Yan, Y. Cao, D. Jena, and H. G. Xing, “Ultralow-leakage AlGaN/GaN high electron mobility transistors on Si with non-alloyed regrown Ohmic contacts,” IEEE Electron Device Lett., vol. 37, no. 1, pp. 16-19, Jan. 2016, doi: 10.1109/LED.2015.2497252
[29] H. Çakmak, M. Öztürk, E. Özbay, and B. Imer, “Nonalloyed Ohmic contacts in AlGaN/GaN HEMTs with MOCVD regrowth of InGaN for Ka-band applications,” IEEE Trans. Electron Devices, vol. 68, no. 3, pp. 1006-1010, Mar. 2021, doi: 10.1109/TED.2021.3050740
[30] X. Wang, H. C. Huang, B. Green, X. Gao, D. Rosenmann, X. Li, and J. Shi, “Au-free low-temperature ohmic contacts for AlGaN/AlN/GaN heterostructures,” J. Vac. Sci. Technol. B, vol. 38, no. 6, Jun. 2020, doi: 10.1116/6.0000287
[31] W. H. Wu, N. C. Yu, J. Tzou, H. C. Kuo, and J. M. Shieh, “The study of low thermal budget gold-free ohmic contact on AlGaN/GaN heterostructure,” IEDMS, 2020
[32] M. Hajłasz, J. J. T. M. Donkers, S. J. Sque, S. B. S. Heil, D. J. Gravesteijn, F. J. R. Rietveld, and J. Schmitz, “Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 104, no. 24, Jun. 2014, doi: 10.1063/1.4884416
[33] J. Náhlík, I. Kašpárková, and P. Fitl, “Study of quantitative influence of sample defects on measurements of resistivity of thin films using van der Pauw method,” Measurement, vol. 44, no. 10, pp. 1968-1979, Dec. 2011, doi: 10.1016/j.measurement.2011.08.023
[34] 陳智偉, “氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作,” 碩士, 電機工程學系, 國立中央大學, 桃園2020
[35] ATLAS User′s Manual, 2016, [online] Available: www.silvaco.com.
[36] P. S. Park, K. M. Reddy, D. N. Nath, Z. Yang, N. P. Padture, and S. Rajan, “Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion,” Appl. Phys. Lett., vol. 102, no. 15, Apr. 2013, doi: 10.1063/1.4801940
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2021-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明