博碩士論文 108521077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.145.176.131
姓名 唐晟哲(Cheng-Che Tang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於第五代通訊之寬頻氮化鎵多悌功率放大 器暨有無使用類比預失真線性化電路之互補式 金氧半導體堆疊式功率放大器
(A Broadband GaN Doherty Power Amplifier and CMOS Stacked-Power Amplifiers With/Without Analog Predistortion Linearizer for 5G Communications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此篇論文利用穩懋半導體公司 (WINTM) 所提供之0.25-µm GaN/SiC 製程與台灣積體電路製造股份有限公司 (tsmcTM) 018-µm CMOS 製程分別設計應用於n79頻段之多悌功率放大器與基於變壓器之推挽式功率放大器、n77頻段之堆疊式功率放大器搭配線性化電路。
第二章使用多悌負載架構於GaN功率放大器之設計來改善功率回退處之功率附加效率。利用數學分析得到一寬頻負載調變網路,並在輸入匹配使用二階帶通濾波器。從量測結果可觀察到其3-dB頻寬為4.4-5.5 GHz,頻帶內最大傳輸增益為15.24 dB,大訊號量測數據因量測儀器之限制無法提供完整結果,量測到之最大輸出功率約為37.6 dBm,其功率附加效率約為25 %、最高功率回退之功率附加效率約為18 %,晶片面積為7.81 mm2 (2.74 mm×2.73 mm)。
第三章分成兩部份:第一部份使用0.18-µm CMOS於n79頻段之推挽式功率放大器,此設計採用基於變壓器之堆疊式架構,同時使用電阻式自偏壓與中和化方法減少電路不穩定性和複雜性。量測結果顯示在n79頻段內最大傳輸增益為17.4 dB,最大輸出功率約為24.06 dBm,1-dB增益壓縮點輸出功率為19.47 dBm,最高功率附加效率約為12.96 %,晶片面積為3.9 mm2 (3 mm×1.3 mm)。第二部份使用0.18-µm CMOS於n77~n79頻段之線性化堆疊式功率放大器,此設計輸出利用二階帶通濾波器達到二倍頻開路之效果,輸入使用變壓器達到隔絕直流與寬頻匹配,為了在不損失效率的前提下,改善其AM-AM之特性,在輸入串接一類比預失真電路。在輸出級堆疊式電晶體間加入一米勒電容以調整電晶體之輸入阻抗達到特性的最佳化,其操作頻寬包含n77~n79頻段為3.3-5 GHz,最大傳輸增益為24.54 dB,最大輸出功率約為24.91 dBm,最高功率附加效率約為30.4 %,1-dB增益壓縮點之輸出功率為23.45 dBm、功率附加效率約為25.3 %,晶片面積為2.1 mm2 (2.1 mm×1 mm)。
摘要(英) This thesis proposed three power amplifiers (PAs) which were designed and fabricated in in WINTM 0.25-µm GaN/SiC and tsmcTM 0.18-µm CMOS technologies. The first PA is a GaN/SiC Doherty power amplifier (DPA) for n79-band applications. The second and third PAs were implemented by transformer-based push-pull and stacked topologies with linearizer for n79 and n77-band operations, respectively.
Chapter 2 describes a GaN DPA for power added efficiency (PAE) improvement at power back-off condition. According to the results of mathematical analysis, the broadband load-modulation networks and a second-order band-pass filter for input matching were derived. The measurements achieve a peak power gain of 15.24 dB across a 3-dB bandwidth from 4.4 to 5.5 GHz. Due to the measurement restrictions, large signal measurement cannot provide complete data. The results show a maximum saturation power (Psat) of 37.4 dBm with a 25 % of PAE, and PAE at back-off 6 dB of 18 % in n79 band. The chip area of the GaN die is 7.81 mm2 (2.74 mm×2.73 mm).
Chapter 3 consists of two parts, the first one is a design of the transformer-based push-pull power amplifier with stacked structure in tsmcTM 0.18-µm CMOS for n79-band. The neutralization and resistive self-biased techniques were adopted for the reduction of circuit unstability and complexity. The measurements achieve a peak power gain of 17.4 dB across n79-band. The large signal results show a maximum Psat of 24.06 dBm with a 12.96 % of PAE, and the output 1-dB gain-compression power (OP1dB) of 19.47 dBm in n79-band. The chip area of the CMOS die is 3.9 mm2 (3 mm×1.3 mm). The second one is a linear stacked power amplifier in tsmcTM 0.18-µm CMOS for n77~n79-band. A second-harmonic open circuit was realized with the use of a second-order bandpass filter. And a transformer was used in the input for DC-block and broadband matching. The power amplifier used an analog pre-distortion circuit to improve the AM-AM performance without cost of the efficiency. To optimize the performance of the power amplifier, a Miller capacitor was added in the output stage to fine-tune the input impedance of the stacked transistors. The measurements achieve a peak power gain of 24.54 dB across n77~n79-band. The large-signal results show a maximum Psat of 24.91 dBm with a 30.4 % of PAE, and the OP1dB of 23.45 dBm with a 25.3 % of PAE in n77~n79-band. The chip area of the CMOS die is 2.1 mm2 (2.1 mm×1.3 mm).
關鍵字(中) ★ 多悌
★ 堆疊式
★ 預失真
★ 功率放大器
關鍵字(英) ★ Doherty
★ stacked
★ pre-distortion
★ power amplifier
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 應用5G頻段之多悌氮化鎵功率放大器 3
2-1 研究現況 3
2-2 功率放大器簡介 5
2-3 多悌功率放大器介紹 8
2-4 應用於n79頻段氮化鎵之兩級多悌功率放大器 14
2-4-1 架構圖 14
2-4-2 電路圖 17
2-4-3 電晶體尺寸選擇 18
2-4-4 輸出匹配設計 21
2-4-5 功率分配器設計 30
2-4-6 輸入匹配設計與偏壓電阻之選擇 33
2-4-7 電路模擬與量測結果 39
2-4-8 結果比較與討論 51
第三章 應用於5G頻段之堆疊式功率放大器 55
3-1 研究現況 55
3-2 堆疊式功率放大器介紹 58
3-3 磁耦合變壓器簡介 61
3-4 線性化結構簡介 66
3-4-1 Cold-FET 預失真線性化技術 66
3-4-2 基於包絡偵測器之預失真電路 69
3-5 應用於n79頻段之堆疊式功率放大器 72
3-5-1 電路圖 72
3-5-2 電晶體偏壓選擇與自偏壓方法 74
3-5-3 輸出匹配設計 76
3-5-4 級間與輸入變壓器設計 83
3-5-5 電路模擬與量測結果 88
3-5-6 結果比較與討論 102
3-6 應用於n77~n79頻段搭配預失真電路之堆疊式功率放大器 106
3-6-1 電路圖 106
3-6-2 電晶體偏壓選擇 108
3-6-3 輸出匹配設計 109
3-6-4 輸入匹配設計 113
3-6-5 電路模擬結果 117
3-6-6 結果比較與討論 124
第四章 結論 126
4-1 總結 126
4-2 未來方向 127
參考文獻 129
參考文獻 [1] W. H. Doherty, "A new high efficiency power amplifier for modulated waves," in Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, Sept. 1936.
[2] G. Lv, W. Chen, X. Liu, F. M. Ghannouchi and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high efficiency and compact size for 5G application," IEEE Access, vol. 7, pp. 71665-71674, 2019.
[3] A. Seidel, J. Wagner and F. Ellinger, "3.6 GHz asymmetric Doherty PA MMIC in 250 nm GaN for 5G applications," in 2020 German Microwave Conference (GeMiC), 2020, pp. 1-4.
[4] S. -H. Li, S. S. H. Hsu, J. Zhang and K. -C. Huang, "Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-Parameters for 5G communications," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5676-5684, Dec. 2018.
[5] G. Lv, W. Chen, L. Chen and Z. Feng, "A fully integrated C-band GaN MMIC Doherty power amplifier with high gain and high efficiency for 5G application," in 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019, pp. 560-563.
[6] A. Barakat, M. Thian, V. Fusco, S. Bulja and L. Guan, "Toward a more generalized Doherty power amplifier design for broadband operation," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 3, pp. 846-859, March 2017.
[7] A. Grebennikov and J. Wong, "A dual-band parallel Doherty power amplifier for wireless applications," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3214-3222, Oct. 2012.
[8] R. Giofré, L. Piazzon, P. Colantonio and F. Giannini, "A distributed matching/combining network suitable for Doherty power amplifiers covering more than an octave frequency band," in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 2014, pp. 1-3.
[9] K. Bathich, A. Z. Markos and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 4, pp. 934-944, April 2011.
[10] D. Y. Wu and S. Boumaiza, "A modified Doherty configuration for broadband amplification using symmetrical devices," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3201-3213, Oct. 2012.
[11] D. Gustafsson, C. M. Andersson and C. Fager, "A modified Doherty power amplifier with extended bandwidth and reconfigurable efficiency," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 533-542, Jan. 2013.
[12] R. Darraji, D. Bhaskar, T. Sharma, M. Helaoui, P. Mousavi and F. M. Ghannouchi, "Generalized theory and design methodology of wideband Doherty amplifiers applied to the realization of an octave-bandwidth prototype," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 3014-3023, Aug. 2017.
[13] C. H. Kim and B. Park, "Fully-integrated two-stage GaN MMIC Doherty power amplifier for LTE small cells," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 918-920, Nov. 2016.
[14] C. H. Kim, S. Jee, G. Jo, K. Lee and B. Kim, "A 2.14-GHz GaN MMIC Doherty power amplifier for small-cell base stations," IEEE Microwave and Wireless Components Letters, vol. 24, no. 4, pp. 263-265, April 2014.
[15] G. Nikandish, R. B. Staszewski and A. Zhu, "Bandwidth enhancement of GaN MMIC Doherty power amplifiers using broadband transformer-based load modulation network," IEEE Access, vol. 7, pp. 119844-119855, 2019.
[16] S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed. Boston, MA: Artech, 2006.
[17] D. P. Nguyen, X. -T. Tran, P. T. Nguyen, N. L. K. Nguyen and A. -V. Pham, "High gain high efficiency Doherty amplifiers with optimized driver stages," in 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), 2019, pp. 420-423.
[18] J. W. Chung, W. E. Hoke, E. M. Chumbes and T. Palacios, "AlGaN/GaN HEMT with 300-GHz fmax," IEEE Electron Device Letters, vol. 31, no. 3, pp. 195-197, March 2010.
[19] R. Darraji, M. M. Honari, R. Mirzavand, F. M. Ghannouchi and P. Mousavi, "Wideband two-section impedance transformer with flat real-to-real impedance matching," IEEE Microwave and Wireless Components Letters, vol. 26, no. 5, pp. 313-315, May 2016.
[20] F. Wang and H. Wang, "A broadband linear ultra-compact mm-wave power amplifier with distributed-balun output network: analysis and design," IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021.
[21] L. Chen, H. Liu, J. Hora, J. A. Zhang, K. S. Yeo and X. Zhu, "A monolithically integrated single-input load-modulated balanced amplifier with enhanced efficiency at power back-off," IEEE Journal of Solid-State Circuits, vol. 56, no. 5, pp. 1553-1564, May 2021.
[22] G. R. Nikandish, R. B. Staszewski and A. Zhu, "Broadband fully integrated GaN power amplifier with minimum-inductance BPF matching and two-transistor AM-PM compensation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4211-4223, Dec. 2020.
[23] N. -C. Kuo et al., "DC/RF hysteresis in microwave pHEMT amplifier induced by gate current—diagnosis and elimination," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 11, pp. 2919-2930, Nov. 2011.
[24] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[25] P. Huang, Z. Tsai, K. Lin and H. Wang, "A high-efficiency, broadband CMOS power amplifier for cognitive radio applications," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3556-3565, Dec. 2010.
[26] H. -W. Choi, S. Choi, J. -T. Lim and C. -Y. Kim, "1-W, high-gain, high-efficiency, and compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781, Aug. 2020.
[27] H. -F. Wu, Q. -F. Cheng, X. -G. Li and H. -P. Fu, "Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[28] Y. -C. Lee, T. -Y. Chen and J. Y. -C. Liu, "An adaptively biased stacked power amplifier without output matching network in 90-nm CMOS," in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1667-1690.
[29] J. A. Jayamon, J. F. Buckwalter and P. M. Asbeck, "Multigate-cell stacked FET design for millimeter-wave CMOS power amplifiers," IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2027-2039, Sept. 2016.
[30] N. Rostomyan, J. A. Jayamon and P. M. Asbeck, "15 GHz Doherty power amplifier with RF predistortion linearizer in CMOS SOI," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1339-1348, March 2018.
[31] J. Park, S. Kang and S. Hong, "Design of a Ka-band cascode power amplifier linearized with cold-FET interstage matching network," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 2, pp. 1429-1438, Feb. 2021.
[32] K. Kao, Y. Hsu, K. Chen and K. Lin, "Phase-delay cold-FET pre-distortion linearizer for millimeter-wave CMOS power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4505-4519, Dec. 2013.
[33] K. Onizuka, H. Ishihara, M. Hosoya, S. Saigusa, O. Watanabe and S. Otaka, "A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion," IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1820-1827, Aug. 2012.
[34] S. N. Ali, P. Agarwal, S. Gopal and D. Heo, "Transformer-based predistortion linearizer for high linearity and high modulation efficiency in mm-wave 5G CMOS power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3074-3087, July 2019.
[35] D. Jung, H. Zhao and H. Wang, "A CMOS highly linear Doherty power amplifier with multigated transistors," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 5, pp. 1883-1891, May 2019.
[36] J. W. Chung, O. Saadat, and T. Palacios, "GaN transistors: redefining the limits electronics," in Proceedings of Workshop on Compound Semiconductor Devices and Integrated Circuits, 2009, pp. Tue1-Tue2 2-6.
[37] C. Li, C. Kuo and M. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[38] B. Ku, S. Baek and S. Hong, "A wideband transformer-coupled CMOS power amplifier for X-band multifunction chips," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1599-1609, June 2011.
[39] C. Alexander and M. Sadiku, Fundamentals of Electric Circuits, 2nd ed. New York: McGraw-Hill, 2004.
[40] C. Li, Y. Liu and C. Kuo, "A 0.6-V 0.33-mW 5.5-GHz receiver front-end using resonator coupling technique," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 6, pp. 1629-1638, June 2011.
[41] J. Lee and S. Hong, "A 24–30 GHz 31.7% fractional bandwidth power amplifier with an adaptive capacitance linearizer," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1163-1167, April 2021.
[42] K. P. Jung, H. S. Son, J. H. Kim and C. S. Park, "Efficient 60-GHz power amplifier with adaptive AM-AM and AM-PM distortions compensation in 65-nm CMOS process," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3045-3055, July 2020.
[43] T. Yao et al., "Algorithmic design of CMOS LNAs and PAs for 60-GHz radio," IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[44] 3GPP. 5G NR; User Equipment (UE) radio transmission and reception; (3GPP TS 38.101-1 version 15.3.0 Release 15).
[45] S. Park, J. Woo, U. Kim and Y. Kwon, "Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1174-1185, April 2015.
[46] Y. Dong, L. Mao and S. Xie, "Fully integrated class-J power amplifier in standard CMOS technology," IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 64-66, Jan. 2017.
[47] A. Ahmed, M. O. Abdalla, E. S. Mengistu and G. Kompa, "Power amplifier modeling using memory polynomial with non-uniform delay taps," in 34th European Microwave Conference, 2004., 2004, pp. 1457-1460.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2022-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明