博碩士論文 108521079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.226.166.156
姓名 賴仕豪(Shih-hao Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化鎵異質整合及矽基毫米波輻射計接收機暨氮化鎵功率放大器之研製
(Design of Radiometer Receiver Using GaAs & CMOS Process and Power Amplifier Using GaN Process)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-22以後開放)
摘要(中) 本論文主要研究為砷化鎵異質整合輻射計接收機、矽基降頻器與氮化鎵功率放大器。其中,輻射計接收機包括三個子電路,分別為切換器、低雜訊放大器與功率偵測器。
第二章提出一個使用穩懋0.15 μm GaAs-PIN HEMT製程操作於Ka頻段單刀雙擲切換器,為於接收機最前端,作為切換接收天線訊號或者雜訊源校正用途。切換器後方之電路為低雜訊放大器,可以提升整體輻射計接收機之響應度與降低雜訊等校功率,使用串接三級源極退化電感架構實現。輻射計接收機之最後端為功率偵測器,採用差動對輸入架構實現,此架構之優點為提供更高的響應度,由於功率偵測器需要差動訊號輸入,因此前級設計一個主動式平衡不平衡轉換器。整體輻射計接收機之在33 GHz有最大響應度為1.2 MV/W、最小雜訊等效功率為10 fW/√Hz,工作頻寬為2.8 GHz,總晶片面積為3×1 mm2。
第三章提出一個使用台積電90 nm CMOS製程操作於W頻段之降頻器,採用達靈頓混頻單元與本地振盪源閘極饋入之電路架構,並且於降頻器之輸入端設計馬相平衡不平衡轉換器,針對馬相平衡不平衡轉換器之耦合線長度差以及補償線長度作設計與分析,目的為提升本地振盪埠至射頻埠之隔離度。當降頻器給定本地振盪功率為5 dBm之轉換增益為-12.5 dB,射頻埠頻寬為75至115 GHz,本地振盪埠之射頻埠隔離度在60 GHz為36 dB,雜訊指數為18 dB,整體功耗為2.6 mW,整體晶片面積為0.88×0.73 mm2。
第四章提出一個使用穩懋0.15 μm GaN製程操作於Ka頻段之功率放大器,高輸出功率與高線性度之功率放大器於發射機為關鍵電路,本章使用傳輸線進行功率整合,並且同時達到寬頻的效果。本功率放大器之小訊號增益為10.6 dB,輸出1dB增益壓縮點為17.1 dBm,飽和輸出功率為21 dBm,輸出三階截斷點為27 dBm,總晶片面積為3×1.4 mm2。
於論文的最後,第五章為本論文之總結與未來研究發展方向。
摘要(英) In this thesis, a radiometer receiver based on gallium arsenide (GaAs) high-electron-mobility transistor (HEMT) process, a W-band down-conversion mixer using CMOS process and a high-power amplifier using gallium nitride (GaN) process are presented. The radiometer receiver includes three blocks, single-pole double-throw (SPDT) switch, low noise amplifier, and power detector.
In Chapter two, a SPDT switch is presented using 0.15-μm GaAs-PIN HEMT process provided by WIN Semiconductors corporation. The SPDT switch at the front-end of the radiometer receiver can be used to switch signal from antenna or calibrate using noise source. The following circuit after SPDT switch is a low noise amplifier (LNA) which can dramatically increase radiometer’s responsivity and largely decrease noise equivalent power. The LNA is realized using three-stage source degeneration architecture. At the output of the radiometer receiver is a power detector which is designed using differential signal input architecture. Since the power detector needs a differential signal input, an active balanced-to-unbalanced circuit is employed. The radiometer receiver achieves a maximum responsivity of 1.2 MV/W and a minimum noise equivalent power of 10 fW/√Hz at 33 GHz. The operation frequency bandwidth is 2.8 GHz. The total chip size of the radiometer receiver is 3×1 mm2.
In Chapter three, a W-band down-conversion mixer is realized using TSMC 90 nm process. To achieve wide operation frequency, a Darlington-mixing cell with LO source-pumped architecture is chosen and to enhance isolation from LO port to RF port, a Marchand Balun is also designed. The length of the compensated line and couple line in Marchand Balun are further analyzed and discussed in this chapter. While the LO power is 5 dBm, the mixer achieves a conversion gain of -12.5 dB. The RF port frequency bandwidth is from 75 to 115 GHz. The isolation from LO port to RF port is 36 dB at 60 GHz. The noise figure is 18 dB with a total dc power consumption of 2.6 mW. The chip size of the down-conversion mixer is 0.88×0.73 mm2.
In Chapter four, a Ka-band power amplifier (PA) is realized using WIN Semiconductors corporation 0.15 μm GaN process. In modern transmitter system, high output power and high linearity PA plays an important role. To combine four transistor output power and achieve wide bandwidth at the same time, a wide transmission line is utilized in this power amplifier. The proposed PA achieves a small-signal gain of 10.1 dB, an output 1-dB compression power of 17.1 dBm, an output saturated power of 21 dBm, and an OIP3 of 27 dBm. The total chip size of the power amplifier is 3×1.4 mm2.
In final chapter, conclusions and future works are presented.
關鍵字(中) ★ 輻射計接收機
★ 降頻器
★ 功率放大器
關鍵字(英) ★ radiometer receiver
★ mixer
★ power amplifier
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xiv
第一章、 緒論 1
1.1 研究動機及背景 1
1.2 相關研究發展 1
1.3 論文貢獻 3
1.4 論文架構 4
第二章、 Ka頻段輻射計接收機 5
2.1簡介 5
2.1.1功率偵測器介紹 5
2.1.2重要參數介紹 6
2.2製程簡介 7
2.2.1穩懋 0.15 μm GaAs-PIN HEMT製程 7
2.3電路設計與分析 8
2.4 電路模擬與量測 30
2.5電路除錯分析 38
2.6 總結 43
第三章、 W頻段寬頻混頻器 44
3.1 簡介 44
3.1.1 降頻器介紹 44
3.1.2 重要參數介紹 45
3.2 製程簡介 46
3.2.1 台積電 90 nm CMOS 製程 46
3.3 電路設計與分析 46
3.4 電路模擬與量測 70
3.5 總結 79
第四章、 Ka頻段功率放大器 81
4.1簡介 81
4.1.1重要參數介紹 81
4.2製程簡介 83
4.2.1穩懋0.15 μm GaN HEMT製程 83
4.3電路設計與分析 84
4.4電路模擬與量測 109
4.5電路除錯分析 115
4.6總結 120
第五章、 結論 125
參考文獻 126
參考文獻 [1] Luca. Aluigi, Domenico Pepe, Federico Alimenti, and Domenico Zito, “K-Band SiGe system-on-chip radiometric receiver for remote sensing of the atmosphere,” IEEE Transaction on Circuits and Systems, vol. 64, no. 12, pp. 3025, Dec. 2017.
[2] A. Tang, T. Reck, R. Shu1, L. Samoska, Yangyho Kim Y. Ye, Q. Gu, B.J. Drouin, J. Truettel, R. Al Hadi, Y. Xu, S. Sarkozy, R. Lai, M-C F. Chang & Imran Mehdi, “A W-Band 65nm CMOS/InP-Hybrid radiometer & passive Imager”, IEEE Conference, 2016.
[3] Jui-Chih Kao, Kun-You Lin, Chau-Ching Chiong, Chu-Yun Peng, and Huei Wang, “A W-band high LO-to-RF isolation triple cascode mixer with wide IF bandwidth,” IEEE Transaction on Circuits and Systems, vol. 62, no. 7, pp. 1506, July. 2014.
[4] K. Phan, C. Mai, S. Lee and C. Huynh, "A Ka-band GaN high power amplifier," 2019 International Symposium on Electrical and Electronics Engineering (ISEE), 2019.
[5] C. Potier, S. Piotrowicz, C. Chang, O. Patard, L. Trinh-Xuan, J. Gruenenpuett, P. Gamarra, P. Altuntas, E. Chartier, J-C Jacquet, C. Lacam, N. Michel, C. Dua, M. Oualli, S.L. Delage, “10W Ka-band MMIC power amplifiers based on InAlGaN/GaN HEMT technology,” IEEE European Microwave Conference, 2019.
[6] J. Kamioka, Y. Tarui, Y. Kamo and S. Shinjo, "54% PAE, 70-W X-Band GaN MMIC power amplifier with individual source via structure," IEEE Microwave and Wireless Components Letters, vol. 30, no. 12, pp. 1149-1152, Dec. 2020.
[7] M. Sato et al., "InP-HEMT MMICs for passive millimeter-wave imaging sensors," 2008 20th International Conference on Indium Phosphide and Related Materials, pp. 1-4, 2008.
[8] J. W. May and G. M. Rebeiz, "Design and characterization of W-band SiGe RFICs for passive millimeter-wave imaging," IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1420-1430, May 2010.
[9] Masaru SATO, Tatsuya HIROSE and Koji MIZUNO, “Advanced MMIC receiver for 94-GHz band passive millimeter-wave imager,” IEICE TRANS. ELECTRON., vol. E92, no. 9, Sep. 2009.
[10] H. Yang, J. Tsai, T. Huang and H. Wang, "Analysis of a new 33–58-GHz doubly balanced drain mixer in 90-nm CMOS technology," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 4, pp. 1057-1068, April 2012.
[11] J. Chen, C. Kuo, Y. Hsin and H. Wang, "A 15-50 GHz broadband resistive FET ring mixer using 0.18-µm CMOS technology, " IEEE MTT-S International Microwave Symposium, pp. 784-787, 2010.
[12] C. Lin, H. Lin, C. Lin, Y. Lai, C. Lin and Y. Wang, "A 16–44 GHz compact doubly balanced monolithic ring mixer," IEEE Microwave and Wireless Components Letters, vol. 18, no. 9, pp. 620-622, Sept. 2008.
[13] Y. Lin, C. Lu and Y. Wang, "A 5 to 45 GHz distributed mixer with cascoded complementary switching pairs," IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, pp. 495-497, Sept. 2013.
[14] C. Chen, Y. Lin, Y. Chen, C. Chiong and H. Wang, "A High LO-to-RF Isolation 34–53 GHz Cascode Mixer for ALMA Observatory Applications," IEEE International Microwave Symposium, pp. 686-689, 2018.
[15] I. Ju, H. Ji and I. Yom, "Ku-band GaAs MMIC high power amplifier with high efficiency and broadband," IEEE Conference on Microwave Techniques, pp. 1-4, Apr. 2015.
[16] M. M. Assefzadeh and A. Babakhani, "Multi-order transmission line-radial stub networks for broadband impedance matching and power combining in a watt-level silicon power amplifier," Wireless and Microwave Circuits and Systems ,pp. 1-3, Sept 2018.
[17] L. A. Samoska et al., "A W-Band spatial power-combining amplifier using GaN MMICs," European Microwave Conference, pp. 1349-1352, Sept. 2018.
[18] Q. Lin et al., "A 2–20-GHz 10-W high-efficiency GaN power amplifier using reactive matching technique," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3148-3158, July 2020.
[19] Y. Chang, B. Lu, Y. Wang and H. Wang, "A Ka-band stacked power amplifier with 24.8-dBm output power and 24.3% PAE in 65-nm CMOS technology," IEEE MTT-S International Microwave Symposium, pp. 316-319, June 2019.
[20] D. Manente, F. Padovan, D. Seebacher, M. Bassi and A. Bevilacqua, "A 28-GHz stacked power amplifier with 20.7-dBm output P1dB in 28-nm Bulk CMOS," IEEE Solid-State Circuits Letters, vol. 3, pp. 170-173, July 2020.
[21] Y. Cao, H. Lyu and K. Chen, "Wideband Doherty power amplifier in quasi-balanced configuration," IEEE Wireless and Microwave Technology Conference, pp. 1-4, April 2019.
[22] C. H. Kim and B. Park, "Fully-integrated two-stage GaN MMIC Doherty power amplifier for LTE small cells," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 918-920, Nov. 2016.
[23] Y. Lin, J. Ji, T. Chien, H. Chang and Y. Wang, "A Ka-band 25-dBm output power high efficiency monolithic Doherty power amplifier in 0.15-μm GaAs E-mode pHEMT process," IEEE Asia Pacific Microwave Conference, pp. 984-987, Nov. 2017.
[24] E. Turkmen, B. Cetindogan, M. Yazici and Y. Gurbuz, "Design and characterization of a D-band SiGe HBT front-end for Dicke radiometers," IEEE Sensors Journal, vol. 20, no. 9, pp. 4694-4703, May 2020.
[25] N. Moon and Y. Kim, "Temperature drift compensation using multiple linear regression for a W-Band total power radiometer," IEEE Sensors Journal, vol. 15, no. 8, pp. 4612-4620, Aug. 2015.
[26] N. Moon and Y. Kim, "Optimized thermal compensation method using clustering and drifted response stability for total power radiometer calibration," IEEE Sensors Journal, vol. 17, no. 5, pp. 1269-1276, March 2017.
[27] L. Zhou, C. Wang, Z. Chen and P. Heydari, "A W-band CMOS receiver chipset for millimeter-wave radiometer systems," IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 378-391, Feb. 2011.
[28] F. Alimenti, G. Tasselli, C. Botteron, P. Farine and C. Enz, "Avalanche microwave noise sources in commercial 90-nm CMOS technology," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 5, pp. 1409-1418, May 2016.
[29] K. Wu, K. Lai, R. Hu and C. Chang, "DC-50GHz wideband phase-compensated 90nm-CMOS active balun design," Asia-Pacific Microwave Conference, pp. 1-3, Dec. 2015.
[30] H. Zhang, G. Qian, W. Zhong and C. Liu, "A 3–15 GHz ultra-wideband 0.15-μm pHEMT low noise amplifier design," International Conference on Communication Systems, pp. 1-4, Dec. 2016.
[31] A. Tang and T. Reck, ‘‘A W-band 65 nm CMOS/InP-hybrid radiometer & passive imager,’’ IEEE IMS Symposium, May 2016.
[32] M. Sato, T. Ohki, and T. Takahashi, “InP-HEMT MMICs for passive millimeter-wave imaging sensors,” IEEE International Conference on Indium Phosphide and Related Materials, May 2008.
[33] Guangyin Feng, Xiang Yi, Fanyi Meng, Chirn Chye Boon, "A W-Band Switch-Less Dicke Receiver for Millimeter-Wave Imaging in 65 nm CMOS", IEEE Access, vol. 6, pp. 39233-39240, 2018.
[34] Roee Ben Yishay, Danny Elad, "D-band Dicke-radiometer in 90 nm SiGe BiCMOS technology", in 2017 IEEE MTT-S International Microwave Symposium Digest, Honolulu Hawai’i, USA, June 2017, pp. 1957-1960.
[35] A. Tomkins, P. Garcia, and S. P. Voinigescu, "A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS," IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 1981-1991, Oct. 2010.
[36] L. Aluigi, D. Pepe, F. Alimenti and D. Zito, "K-Band SiGe System-on-Chip Radiometric Receiver for Remote Sensing of the Atmosphere", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 64, no. 12, pp. 3025-3035, Dec. 2017.
[37] Esref Turkmen, Barbaros Cetindogan, Melik Yazici, Yasar Gurbuz,“Design and Characterization of a D-Band SiGe HBT Front-End for Dicke Radiometers” IEEE Sensors Journal, vol. 20, no. 1, pp. 4694-4703, May. 2020.
[38] K. Nakamura, N. Iwasawa, K. Kawasaki, N. Shibagaki, Y. Sato and K. Kashima, "Study of the new application using the millimeter-wave in the railway," IEEE Conference on Antenna Measurements & Applications, pp. 20-23, Dec. 2017.
[39] C. Li, W. Hsieh and T. Chiu, "A flip-chip-assembled W-band receiver in 90-nm CMOS and IPD technologies," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 4, pp. 1628-1639, April 2019.
[40] J. A. Qayyum, J. D. Albrecht and A. C. Ulusoy, "A compact V-band upconversion mixer with −1.4-dBm OP1dB in SiGe HBT technology," IEEE Microwave and Wireless Components Letters, vol. 29, no. 4, pp. 276-278, April 2019.
[41] Yi-Ching Wu, C. Chiong and H. Wang, "A novel 30–90 GHz singly balanced mixer with broadband LO/IF," IEEE MTT-S International Microwave Symposium, pp. 1-4, May 2016.
[42] P. Tsai, Y. Lin, J. Kuo, Z. Tsai and H. Wang, "Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand Balun," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1913-1923, May 2013.
[43] Y.-S. Lin, C.-L. Lu, and Y.-H. Wang, “A 5 to 45 GHz distributed mixer with cascoded complementary switching pairs,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 9, pp. 495–497, Sep. 2013.
[44] H. Y. Yang, J. H. Tsai, T. W. Huang, and H. Wang, “Analysis of a new 33–58-GHz double-balanced drain mixer in 90-nm CMOS technology,” IEEE Tran. Microw. Theory Tech, vol. 60, no. 4, pp. 1057–1068, Apr. 2012.
[45] J.-C. Kao, K.-Y. Lin, C.-C. Chiong, C.-Y. Peng, and H. Wang,“A W-band high LO-to-RF isolation triple cascode mixer with wide IF bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1506–1514, Jul. 2014.
[46] Yaxin Zhang ,Wenfeng Liang, Paulius Sakalas, Anindya Mukherjee, Xiaodi Jin, Julia Krause, and Michael Schröter, “12-mW 97-GHz Low-Power Down-conversion Mixer With 0.7-V Supply Voltage,” IEEE Microw. And Wireless Compon. Lett., vol. 29, no. 4, Apr. 2019.
[47] Yo-Sheng Lin, Kai-Siang Lan, Chien-Chin Wang, Chien-Chu Chi, and Shey-Shi Lu, “6.3 mW 94 GHz CMOS Down-Conversion Mixer With 11.6 dB Gain and 54 dB LO-RF Isolation” IEEE Microw. And Wireless Compon. Lett., vol. 26, no. 8, Aug. 2016.
[48] WIN Semiconductors Corporation PIHI-10 PINHEMT:4-V Enhancement Mode pHEMT with Integrated 1 μm i-PIN & 0.4 μm i-SBD Layout Design Manual.
[49] WIN Semiconductors Corporation NP15-00 0.15 μm GaN/SiC HEMT Power Device Layout Design Manual.
[50] K. Phan, C. Mai, S. Lee and C. Huynh, "A Ka-band GaN high power amplifier," IEEE International Symposium on Electrical and Electronics Engineering (ISEE), pp. 19-22, Oct. 2019.
[51] M. Li, "A millimeter wave broadband GaAs power amplifier with balanced bias feedings for stability enhancement," IEEE Wireless and Microwave Technology Conference, pp. 1-4,April 2016.
[52] G. Lv, W. Chen and Z. Feng, "A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications," IEEE/MTT-S International Microwave Symposium, pp. 808-811, June 2018.
[53] I. Ju, H. Ji and I. Yom, "Ku-band GaAs MMIC high power amplifier with high efficiency and broadband," IEEE Conference on Microwave Techniques, pp. 1-4, April 2015.
[54] T. Tian, X. Sun, H. Gao and S. Lu, "A novel differential push-pull amplifier based on N-yype GaAs HBT," IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, pp. 142-145, May 2018.
[55] C. Florian, R. P. Paganelli and J. A. Lonac, "12-W X -band MMIC HPA and driver amplifiers in InGaP-GaAs HBT technology for space SAR T/R modules," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1805-1816, June 2012.
[56] NP15-00 0.15μm GaN/SiC HEMT Power Device Layout Design Manual.
[57] A. Alizadeh, M. Frounchi and A. Medi, "On Design of Wideband Compact-Size Ka/Q-Band High-Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1831-1842, 29 April 2016.
[58] H. Alsuraisry, S. Yen, J. Tsai and T. Huang, "Ka-band up-link CMOS/GaAs power amplifier design for satellite-based wireless sensor," 2017 Topical Workshop on Internet of Space (TWIOS), pp. 1-3, Jan. 2017.
[59] G. Lv, W. Chen and Z. Feng, "A Compact and Broadband Ka-band Asymmetrical GaAs Doherty Power Amplifier MMIC for 5G Communications," 2018 IEEE/MTT-S International Microwave Symposium - IMS, pp. 808-811, June 2018.
[60] J. Curtis, A. Pham, M. Chirala, F. Aryanfar and Z. Pi, "A Ka-Band doherty power amplifier with 25.1 dBm output power, 38% peak PAE and 27% back-off PAE," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 349-352, July 2013.
[61] Y. L. Jiang and Y. Fan, "A Compact Ka-Band GaAs pHEMT MMIC Notch Filtering Power Amplifier," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), pp. 1-3, May 2019.
[62] D. P. Nguyen, J. Curtis and A. Pham, "A Doherty Amplifier With Modified Load Modulation Scheme Based on Load–Pull Data," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 227-236, Jan. 2018.
指導教授 張鴻埜(Hong-yeh Chang) 審核日期 2021-10-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明