博碩士論文 108521093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.118.164.187
姓名 高潔聲(Chieh-Sheng Kao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 結合機器學習與多光源光體積血容積之非侵入式血糖偵測
(Non-Invasive Blood Glucose Detection by means of Multi-Source PPG and Machine Learning)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-4以後開放)
摘要(中) 近年來,為了使糖尿病患者免於日常扎針之苦,研究人員致力於發展光學式血糖量測方法。本研究結合多光源光體積血容積(Photoplethysmography,PPG)訊號與機器學習進行非侵入式的血糖預測。我們使用血紅素較易吸收的綠光(波長530nm)與葡萄糖較易吸收的紅外光(波長1550nm)自製雙光源H-bridge電路進行受測者指尖光體積血容積PPG訊號量測。PPG訊號由STM32F429 MCU搭配AFE4490類比前端晶片,透過藍芽回傳至電腦,再由python解碼。同時,本研究也透過ADS1299晶片收取受測者心電圖(Electrocardiography,ECG)、Edan iM50 patient monitor收取受測者血壓等生理訊號。
18位受測者在餐前以及餐後三十分鐘分別進行上述實驗,也使用市售OneTouch Ultra- Plus-Flex血糖機量測血糖,以便和預測的血糖值做誤差計算。PPG、ECG、血壓等生理訊號將提取出的19項特徵,經由Beer-Lambert law轉換為相互線性關係後,由partial F-test進行特徵選用。接著18位受測者輪流做為測試資料輸入多元線性回歸模型進行18 fold cross validation。本研究使用臨床上認可的Clarke Error Grid以及平均絕對偏差(mean absolute relative difference, mARD)當作血糖預測準確度的標準,獲得平均0.62的R2以及9.45%誤差。
摘要(英) Traditional finger-pick method for blood glucose monitoring requires invasively inserting a needle under the skin to get a blood sample. In order to relieve the pain of daily finger-pricking of diabetes patients, reserachers have dedicated themselves in developing optical glucose meters over the past decades. In our study, we combine the Photoplethysmography(PPG) signals of multi-wavelength LEDs and machine learning to develop a non-invasive blood glucose monitoring and prediction system.
Two LED light sources with wavelengths of 530 nm and 1550 nm , which are sensititive to hemoglobin and glucose, respectively, were conducted by an H-bridge circuit to measure the fingertip PPG signal of subjects. PPG signal is captured with an STM32F429 MCU and AFE4490 analog front end, then transferred back to a computer via Bluetooth and decoded with Python. Other physiological signals such as Electrocardiography(ECG) with ADS1299 ADC and blood pressure with Edan iM50 patient monitor are measured as well.
18 volunteered subjects are requested to perform the above measurements while fasting and 30 minutes breakfast, and have their blood glucose measured by a OneTouch Ultra- Plus-Flex glucose meter to get a reference ground truth of the predictions. Features are transformed into linearity according to the Beer-Lambert law then a series of partial F-tests are applied on 19 features extracted from PPG, ECG and blood pressure signals to select features with high impact and reliability. An 18 fold cross validation is then performed with on a multiple regression model. This study applies the clinically accepted Clarke Error Grid and the mean absolute relative difference(mARD) as standards of the prediction accuracies, and has a mean R2 of 0.62 and mARD of 9.45%.
關鍵字(中) ★ 非侵入式
★ 血糖偵測
★ 多光源
★ 光體積血容積
關鍵字(英) ★ Non-invasive
★ glucose
★ PPG
論文目次 摘要.………………………………………………………………………………..….i
Abstract………………………………………………………………………………ii
目錄.…………………………………………………………………………………..iii
圖目錄.……………………………………………………………………………..….v
表目錄.……………………………………………………………………………….vii
第一章 緒論…………………………………………………………………………..1
1-1 前言…………………………………………………………………………1
1-2 文獻回顧……………………………………………………………………2
1-2-1 侵入式量測…………………………………………………………2
1-2-2 非侵入式量測………………………………………………………2
1-3 研究動機與目的……………………………………………………………3
1-4 論文章節架構………………………………………………………………3
第二章 原理介紹……………………………………………………………………..4
2-1 光體積血容積(Photoplethysmography, PPG) ………………………….4
2-1-1 光體積血容積量測原理……………………………………………4
2-1-2 不同波長光源所對應之光體積血容積……………………………5
2-2 人體生理原理………………………………………………………………7
2-2-1 血糖恆定與糖尿病…………………………………………………7
2-2-2 心動週期……………………………………………………………9
2-2-3 脈搏波與血壓……………………………………………………..10
2-2-4 脈波傳遞時間……………………………………………………..12
第三章 研究設計與方法……………………………………………………………13
3-1 系統架構…………………………………………………………………..13
3-2 硬體………………………………………………………………………..14
3-2-1 AFE4490……………………………………………………………15
3-2-2 ADS1299……………………………………………………………15
3-2-3 STM32F429…………………………………………………………16
3-3 特徵擷取演算法…………………………………………………………..16
3-3-1 PPG valley/systolic peak偵測……………………………….19
3-3-2 PPG notch/diastolic peak偵測……………………………….22
3-3-3 基於Beer-Lambert law校正特徵………………………………24
3-4 實驗流程與資料型態……………………………………………………..25
3-4-1 實驗流程設計……………………………………………………..25
3-4-2 資料型態…………………………………………………………..26
3-5 血糖預測…………………………………………………………………..27
3-5-1 Partial F-test特徵選用……………………………………….27
3-5-2 多元線性迴歸分析(multiple linear regression) …….........29
3-6 準確度判斷………………………………………………………………..30
3-6-1 平均絕對偏差(mean absolute relative difference, mARD)30
3-6-2 Clarke Error Grid………………………………………………31
第四章 結果與討論…………………………………………………………………32
4-1 Partial F-test 選取之特徵與多元線性回歸之成效…………………32
4-2 Lasso Regression選取之特徵及成效………………………………….39
4-3 以獨立資料集測試模型之成效…………………………………………..40
第五章 結論與未來展望……………………………………………………………41
第六章 參考文獻……………………………………………………………………42
附錄 Partial F-test特徵選取之模型F值與P值……………………………...45
參考文獻 [1] W. H. Organization, "Leading causes of death and disability worldwide 2000-2019," 9 December 2020.
[2] 衛生福利部統計處, "108 年," 15 June 2020.
[3] D. L. Williams, A. R. Doig, and A. J. A. C. Korosi, "Electrochemical-enzymatic analysis of blood glucose and lactate," vol. 42, no. 1, pp. 118-121, 1970.
[4] K. H. Hazen, M. A. Arnold, and G. W. J. A. S. Small, "Measurement of glucose in water with first-overtone near-infrared spectra," vol. 52, no. 12, pp. 1597-1605, 1998.
[5] M. A. Arnold and G. W. J. A. C. Small, "Noninvasive glucose sensing," vol. 77, no. 17, pp. 5429-5439, 2005.
[6] H. M. Heise, A. Bittner, and R. J. J. o. N. I. S. Marbach, "Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring," vol. 6, no. 1, pp. 349-359, 1998.
[7] A. M. Enejder et al., "Raman spectroscopy for noninvasive glucose measurements," vol. 10, no. 3, p. 031114, 2005.
[8] J. W. Kang et al., "Direct observation of glucose fingerprint using in vivo Raman spectroscopy," vol. 6, no. 4, p. eaay5206, 2020.
[9] R. J. Buford, E. C. Green, and M. J. McClung, "A microwave frequency sensor for non-invasive blood-glucose measurement," in 2008 IEEE Sensors Applications Symposium, 2008, pp. 4-7: IEEE.
[10] C.-F. So, K.-S. Choi, T. K. Wong, and J. W. J. M. D. Chung, "Recent advances in noninvasive glucose monitoring," vol. 5, p. 45, 2012.
[11] Y. Zhang, Y. Zhang, S. A. Siddiqui, and A. J. E. V. Kos, "Non-invasive blood-glucose estimation using smartphone PPG signals and subspace kNN classifier," vol. 86, no. 1/2, pp. 68-74, 2019.
[12] G. Zhang et al., "A noninvasive blood glucose monitoring system based on smartphone PPG signal processing and machine learning," vol. 16, no. 11, pp. 7209-7218, 2020.
[13] S. Habbu, M. Dale, and R. J. S. Ghongade, "Estimation of blood glucose by non-invasive method using photoplethysmography," vol. 44, no. 6, pp. 1-14, 2019.
[14] D. J. J. o. B. Guo and Medicines, "Noninvasive blood glucose measurement based on NIR spectrums and double ANN analysis," vol. 3, no. 06, p. 42, 2015.
[15] M. A. Al-Dhaheri, N.-E. Mekkakia-Maaza, H. Mouhadjer, A. J. I. J. o. E. Lakhdari, and C. Engineering, "Noninvasive blood glucose monitoring system based on near-infrared method," vol. 10, no. 2, 2020.
[16] S. Bagha and L. J. I. j. o. c. a. Shaw, "A real time analysis of PPG signal for measurement of SpO2 and pulse rate," vol. 36, no. 11, pp. 45-50, 2011.
[17] Z. Zhang, Z. Pi, and B. J. I. T. o. b. e. Liu, "TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise," vol. 62, no. 2, pp. 522-531, 2014.
[18] D. Jarchi, D. Salvi, L. Tarassenko, and D. A. J. S. Clifton, "Validation of instantaneous respiratory rate using reflectance PPG from different body positions," vol. 18, no. 11, p. 3705, 2018.
[19] N. de Pinho Ferreira, C. Gehin, B. J. I. Massot, and R. i. B. engineering, "A Review of Methods for Non-Invasive Heart Rate Measurement on Wrist," 2020.
[20] Juniperus, "Light and Health."
[21] S. Prahl, "Optical Absorption of Hemoglobin," 1999.
[22] M. Ogawa et al., "Determination of concentrations of glucose and human serum albumin in mixtures in phosphate-buffered solution by near-infrared spectroscopy," vol. 24, no. 6, pp. 323-333, 2012.
[23] R. Hotmartua, P. W. Pangestu, H. Zakaria, and Y. S. Irawan, "Noninvasive blood glucose detection using near infrared sensor," in 2015 International Conference on Electrical Engineering and Informatics (ICEEI), 2015, pp. 687-692: IEEE.
[24] A. education, "Regulation of Blood Glucose."
[25] "心動週期," 25 April 2016.
[26] M. J. C. c. r. Elgendi, "On the analysis of fingertip photoplethysmogram signals," vol. 8, no. 1, pp. 14-25, 2012.
[27] D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur, H. J. I. j. o. b. Nazeran, and bioelectronics, "A review on wearable photoplethysmography sensors and their potential future applications in health care," vol. 4, no. 4, p. 195, 2018.
[28] P. G. Gandhi and G. H. J. I. j. o. g. m. Rao, "The spectral analysis of photoplethysmography to evaluate an independent cardiovascular risk factor," vol. 7, p. 539, 2014.
[29] R. C. Block et al., "Conventional pulse transit times as markers of blood pressure changes in humans," vol. 10, no. 1, pp. 1-9, 2020.
[30] O. Contal et al., "Pulse transit time as a measure of respiratory effort under noninvasive ventilation," vol. 41, no. 2, pp. 346-353, 2013.
[31] D. McDuff, S. Gontarek, and R. W. J. I. T. o. B. E. Picard, "Remote detection of photoplethysmographic systolic and diastolic peaks using a digital camera," vol. 61, no. 12, pp. 2948-2954, 2014.
[32] D. F. J. J. o. c. e. Swinehart, "The beer-lambert law," vol. 39, no. 7, p. 333, 1962.
[33] E. D. Chan, M. M. Chan, and M. M. J. R. m. Chan, "Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations," vol. 107, no. 6, pp. 789-799, 2013.
[34] P. D. J. A. Mannheimer and Analgesia, "The light–tissue interaction of pulse oximetry," vol. 105, no. 6, pp. S10-S17, 2007.
[35] T. J. B. e. l. Tamura, "Current progress of photoplethysmography and SPO 2 for health monitoring," vol. 9, no. 1, pp. 21-36, 2019.
[36] A. Chaurasia and O. J. S. i. m. Harel, "Partial F‐tests with multiply imputed data in the linear regression framework via coefficient of determination," vol. 34, no. 3, pp. 432-443, 2015.
[37] M. Jamshidian, R. I. Jennrich, W. J. C. s. Liu, and d. analysis, "A study of partial F tests for multiple linear regression models," vol. 51, no. 12, pp. 6269-6284, 2007.
[38] D. J. Olive, "Multiple linear regression," in Linear regression: Springer, 2017, pp. 17-83.
[39] K. Dunn, "Process Improvement Using Data," 22 April 2021.
[40] F. Reiterer et al., "Significance and reliability of MARD for the accuracy of CGM systems," vol. 11, no. 1, pp. 59-67, 2017.
[41] W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. J. D. c. Pohl, "Evaluating clinical accuracy of systems for self-monitoring of blood glucose," vol. 10, no. 5, pp. 622-628, 1987.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明